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ABSTRACT 

 

 

 

 Production scheduling models in which parts to be processed are classified 

into part-families, based on the principles of group technology is referred to as 

group scheduling (GS). The creation of part-families leads to the creation of a two-

phase scheduling problem. First phase is to schedule part-families, and second is to 

schedule jobs within each family. 

 

 Benefits of such approach include setup time reduction and the simplification 

of the scheduling problem. This is suitable for the current trends in manufacturing, 

which indicate tendency towards batch production systems, larger product mix, 

reduced throughput times, and the wide application of group technology and cellular 

manufacturing systems. A typical application of GS is the scheduling of the static 

flow line manufacturing cell. 

 

 This research studies GS in a static flow-line manufacturing cell that is 

dedicated for the processing of a number of part-families. A selected number of GS 

heuristics are investigated and compared to each other with respect to makespan and 

total flow time, separately. Heuristics are classified, according to the amount of 

calculations involved, into single-pass methods, multiple pass methods and the 

iterative improvement techniques.  

 

 A number of modifications are proposed in order to explore the relative 

capabilities of the three classes of heuristic and to investigate the characteristics of 

the GS model. A recursive procedure for timetabling and calculating makespan and 

total flow time in multi-family cells is proposed. The procedure is capable of 

accounting for the possibility of the existence of the zero processing times in the 

multi-family cells. In addition, a case study was carried out to explore the 

applicability of GS in an existing typical batch production system. 
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 Results of the research showed that the proposed modification could improve 

the performance of the GS heuristics under study. It was also found that the 

interaction between the two phases of scheduling in GS should be considered in 

developing GS heuristics. The iterative improvement techniques were found 

appropriate for GS not only because of their superiority over the simple methods but 

because they can handle the interaction between the two scheduling phases of GS as 

well.  

 

Of the iterative methods, the tabu search heuristic is found to be preferable to the 

simulated annealing heuristic. Tabu search provides the ability to control its 

behaviour by the flexibility to consider different search-based information in 

defining its components so as to improve its performance. 

 

Results also showed that the zero processing times have to be considered during 

timetabling calculations in multi-family cells, otherwise erroneous and misleading 

information would be obtained. Meanwhile it does not seem effective to consider 

the zero-processing times in the structure of the heuristics.  

 

It is also found that due to the zero processing times, makespan should not be 

defined as the time span from the start of the first job on the first machine to the 

completion of the last job on the last machine. Instead it has to be defined as the 

largest completion time given that completion times for the zero-time jobs are set to 

zero. Makespan is not necessarily associated with the last job or the last machine. In 

addition, optimizing makespan can lead to a relatively good total flow time while 

the inverse is not true. 

 

The case study showed that it is possible to apply GS in a traditional existing flow 

shops without formulating manufacturing cells physically. 
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NOMENCLATURES 

 

 
Ai : First scheduling index in family phase in Hitomi. 

Aij : First scheduling index in job phase in Hitomi. 
x

iA  : First scheduling index in family phase for subproblem x in CDS. 
x

ijA  : First scheduling index in job phase for subproblem x in CDS. 

oAP  : Initial acceptance probability in SA. 

xAP  : Acceptance probability in iteration x in SA. 

Bi : Second scheduling index in family phase in Hitomi. 

Bij : Second scheduling index in job phase in Hitomi. 
x

iB  : Second scheduling index in family phase for subproblem x in CDS. 
x

ijB  : Second scheduling index in job phase for subproblem x in CDS. 

Cj : Completion time of job j. 

Cmax : Makespan. 

dj :  Due date of job j. 

GP : Switch variable between phases in SA. 

F : Number of parts families. 

Fj : Flow time of job j. 

Fmax : Maximum flow time. 

i : Families index. 

(i) : Family in position i in sequence. 

j : Jobs index. 

Jij : Job j in family i. 

(j) : Job in position j in sequence. 

k : Machines index. 

Lj : Lateness of job j. 

Lmax : Maximum lateness. 

L  : Mean lateness. 

M : Number of available machines. 

N : Number of jobs. 

NT : Number of tardy jobs. 

ni : Number of jobs in family i. 

Ojk : An operation for job j on machine k in traditional models. 

Pjk : Processing time of job j on machine k in traditional models. 

Pik : Sum of processing times of all jobs in family i on machine k. 

Pijk : Processing time of job j within family i  on machine k in GS. 

r : Temperature reduction factor in SA.. 

rj :  Release date of Job j. 
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s : A move in TS 

Sik : Setup time of family i on machine k. 

S(x) : Set of moves applicable to a trial solution x. 

T : Set of tabu moves; the tabu-list. 

Ti : Sequence index for family phase in NEH. 

Tij : Sequence index for job phase in NEH. 

Tj : Tardiness of job j. 

Tmax : Maximum tardiness. 

T  : Mean tardiness. 

X : Iterations counter in SA. 

X(s) : Set of solution accessible from x by S(x). 

Y : Number of searches per iteration in SA. 

 : Reduction factor of the acceptance probability in SA. 

AFM : Relative total flow time associated with a makespan. 

AMF : Relative makespan associated with a total flow time. 

ITM : Intermediate Term Memory in TS. 

LTM : Long Term Memory in TS. 

RELF : Relative total flow time. 

RLEM : Relative makespan. 
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CHAPTER 1 

 

INTRODUCTION 

 

The topic of production scheduling has received renewed attention due to the 

changes in the business and technological environment. Current trends in 

manufacturing indicate a tendency towards reduced throughput times, lower 

inventory levels, smaller lot sizes, and the adoption of the innovative manufacturing 

concepts such as Total Quality Control (TQC), Just-In-Time (JIT), besides the wide 

applications of Group Technology (GT) and Cellular Manufacturing Systems (CMS). 

In addition, there is a trend away from the pure mass production organization towards 

batch production systems [1,2,3]. 

 

The open worldwide competition, increased capital cost, wide range of 

customer expectations, and shorter product life cycles, are factors that have dramatic 

impact upon manufacturing. Industrial firms have to produce in a larger product mix, 

smaller volumes, and shorter production runs. This in turn has dramatically increased 

the perceived importance of scheduling. Thus, improved production scheduling 

techniques incorporating the new manufacturing circumstances are essential to cope 

with the changing market place [2,4,5,6,7,8]. 

 

 Industrial engineering has introduced the concept of GT to rationalize 

component design and manufacturing [9]. GT is a proven technique that has 

invalidated the inverse relationship between batch size and manufacturing costs. It 

has made available, for a small batch producer, economies that were earlier believed 

possible for mass production systems only [10]. 

 

 Main advantages attributed to the application of GT are the reduced setup 

times and costs, the possibility of flow-shop pattern which in turn reduces the costs of 
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material handling and buffering and simplifies production control, and the possibility 

to develop cellular layouts and formulating manufacturing cells [3,5,11,12,13]. 

 

Meanwhile, the basic efforts in GT are to identify families of parts that 

require similar processing on a set of machines. These machines are then grouped 

into manufacturing cells. That is: a part family is a set of similar jobs in terms of 

setup and processing requirements. The manufacturing cell can be regarded as a 

group of machines located in close proximity and dedicated for the manufacture of a 

specific number of part families [10,12,14]. Cells have been found to lead to the 

usual benefits rooted to GT while combining the flexibility of a job shop and the 

efficiency of the flow shop [15,16].  

 

Manufacturing cells can be of two configurations: job shop cells, and flow 

line cells. A flow line layout has definite advantages over job shop layout. It implies 

simplified flows, minimum material handling and greater control of cell activities 

[17,18]. In fact, one of the reasons justifying a changeover of a general job shop to a 

CMS is the possibility of creating flow line cells and the use of efficient scheduling 

and sequencing procedures [15]. 

 

 Production scheduling models associated with the application of GT is 

referred to as Group Scheduling (GS) [3,5,11,13]. GS is applied where parts to be 

processed are classified into different families, to take advantage of the similar 

processing requirements and the common setup times. A typical application of GS is 

the scheduling of the static flow-line cell [19]. 

 

The creation of part families leads to the creation of a two-phase scheduling 

model; first phase is to schedule part families, and second is to schedule jobs within 

each family. Scheduling is greatly simplified with the GS model in addition to the 

reduction of the setup times [11,15,20,21]. Results generally indicated that GS 
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approach yields superior performance over the traditional single-phase models 

[14,22]. 

 

 The traditional models can be regarded as a kind of GS in which there is only 

one family consisting of all the jobs, or alternatively, each family contains one job. 

However, for such a traditional situation consider N jobs to be processed through a 

number of M machines. It is required to identify the best sequence of processing of 

these jobs. If, for simplicity, the sequence of processing is maintained the same on all 

machines, which is termed permutation scheduling, then the number of possible 

sequences will be N!, only one of them is to be identified as the best. 

 

 If the N jobs are classified into F families each containing ni  jobs, then the 

number of permutation schedules to be considered will be               .  In a typical 

example this is about 15% of N! [11]. Thus, scheduling is remarkably simplified by 

the GS application. 

 

 The other main advantage offered by GS is the setup time reduction realized 

by processing of jobs in the same family in succession and having one common setup 

for them. Including setup time in processing time is a classical assumption in 

production scheduling. However, scheduling models that separate setup time from 

processing time were found to lead to better results than those with setup time 

included [21], which gives significance to GS. 

 

Further, in real practice, similar jobs are often combined together to avoid 

changeover times. This use of informal part families is an application of GT. More 

advanced usage is to create formal part families, dedicate clusters of machines to 

these families, without rearranging of the equipment, and explicitly recognize part 

families in the scheduling process [23]. This means that even thought a cell is not 

formed, GS concepts can still be applied effectively with the existing shop layout [5]. 





F

1i
inF!
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This leads to the possibility to achieve advantages of GT and CMS by the use of GS, 

without formulating cells physically.  

 

Nevertheless, although simpler than an equivalent traditional problem, GS 

problem is non-polynomial complete (NP-complete) and an optimal solution can, in 

practice, be found for small sized problems only. Researchers have adopted the 

heuristic approaches to produce near optimal solutions [21].  

 

This research studies group scheduling in a static flow-line cell that is 

dedicated for the processing of a number of part-families.  Selected GS heuristics are 

investigated and compared to each other. A number of modifications and suggestions 

are proposed in order to explore the characteristics of the GS model and the 

capabilities of the heuristics. Heuristics are classified according to the amount of 

computational efforts involved, into three main categories: the single-pass methods 

that generate a single solution, the multiple-pass methods that generate a finite 

number of solutions and the iterative improvement techniques which starts with an 

initial solutions and work iteratively to improve it.  

 

And since it is possible to apply GS without rearranging the equipment into 

cells, this work is applicable to flow shops as well. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter presents a review of GS literatures. Since GS is a form of the 

general scheduling problem, a brief review of production scheduling will be 

presented. Efforts to solve the scheduling problem in a flow shop are summarized 

hence to show how the traditional work was modified for GS applications. 

Afterward, GS model is defined and previous work is reviewed and presented. 

 

 

2.1 PRODUCTION SCHEDULING 

 

 Scheduling is one of production decisions concerned with timing [24]. It is the 

function of determining an optimal implementation time plan for performing the 

necessary jobs [11]. The schedule is the sequence by which jobs are to be processed. 

It is defined as the listing of jobs to be processed through a workshop, and their 

respective start dates as well as other related information [26]. This is done after the 

production items and the quantities to be manufactured in specified time periods have 

been decided by production planning, and the production processes for those items 

have been determined by process planning [3,26]. 

 

The job is a task consisting of a collection of operations arranged in the 

technological order. It is a part, or a product, completed through a single or a number 

of machines, on each of them an operation such as turning, drilling…etc., is 

performed [3,11,26]. 

 

 The scheduling problem had evolved tied to the scientific management in the 

early 20
th

 century. In that time Henry Gantt developed the Gantt chart for controlling 

jobs and shop operations. The chart has been used as a visual aid in controlling 
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machine loading in manufacturing shops, and hence the evolution of the problem of 

scheduling [3]. This may be the reason that most of terms used in the study of 

scheduling are related to manufacturing and industry, although scheduling problem 

appears in various fields [24]. 

 

 Generally, there are three main categories of production scheduling situations  

[3,5,11,20,27,28]: 

 

1. Single machine scheduling; determining the order of processing of jobs on 

a single machine. 

2. Flow shop scheduling; scheduling in a flow shop, where the sequence of 

machines is the same for all the processed jobs. 

3. Job shop scheduling; scheduling in a job shop where the sequence of 

machines differs for each job. 

 

If the set of jobs available for scheduling does not change over time, the 

system is called static. If new jobs arrive over time the system is dynamic. Static 

models have proven more tractable than dynamic models. Moreover, static models 

have often captured the essence of the more complex, dynamic systems, and the 

analysis of static problems has frequently been useful in the study of the more general 

situations [26]. 

 

2.1.1 The General Scheduling Problem 

 

 The general scheduling problem can be stated as follows [3,5,20,27]: 

 

1. A set of N jobs has to be processed. 

2. A set of M machines is available. 

3. The processing of job j (j = 1,2…N), on machine k (k = 1,2…M) is termed an 

operation. 
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4. For each operation there is an associated processing time; Pjk , which is the 

time needed for processing job j on machine k. 

5. For each job there may be a release date rj; which is the time at which job j is 

ready for being processed. 

6. There may be a due date dj at which job j should be completed. 

7. The flow pattern or the order of machines for any job may or may not be fixed 

for all jobs; (cases of flow shop or job shop respectively). 

 

 The following assumptions appear frequently in literatures [3,11,24,27]: 

 

1. Machines are always available and never break down. 

2. There is only one machine of each type in the shop. 

3. All jobs are available simultaneously at the commencement of processing. 

4. Processing times are deterministic and known in advance. 

5. Setup times are independent of the sequence of processing and are included in 

the processing times. 

6. Transportation times are ignored or included in processing times. 

7. The job consists of a strictly ordered sequence of operations. 

8. Each machine can handle one and only one operation at a time. 

9. Each operation can be performed by only one machine at a time. 

10. No preemption is allowed: once a job is started it should be completed. 

11. No relative priorities among jobs. 

 

2.1.2 Complexity of the Scheduling Problem 

 

The complexity of a scheduling algorithm refers to the execution time required 

to reach a solution. This time is usually expressed as a function of the number of jobs 

N. An algorithm is said to have a complexity of the order of the N
3
;(O(N

3
)) if there 

exist a constant c such that the function cN
3
 bounds its execution time. An algorithm 

whose complexity is bounded by a polynomial in N is a polynomial-time algorithm. 
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This algorithm is expected to be efficient and the associated problem is easy to solve. 

For the majority of the production scheduling problems there are no polynomial-time 

algorithms have been known. Such problems are called non polynomial complete 

(NP-complete), or NP-Hard [11].  

 

In addition, the problem of scheduling is of combinatorial nature, that is the 

optimal solution is to be selected from among a large number of feasible alternatives. 

It is difficult to determine the optimal schedule in a real situation within a reasonable 

period of time due to the difficulty of acquiring the accurate information. Even, with 

the complete information available the task of optimal scheduling is not easy because 

the number of schedules to be considered is not small [11,29]. 

 

Consider the scheduling of N jobs on M machines. This is a combinatorial 

problem since there are (N!)
M

 alternative solutions among which one is the optimal 

with respect to some measure of performance, and it can theoretically be found in a 

finite number of computational iterations. However, for example, in a small problem 

of scheduling 5 jobs on 8 machines, there exists (5!)
8 

= 4.3x10
16

 possible schedules. 

Using a high-performance computer that can evaluate one alternative in one 

microsecond, it will take about 1363 years to find the optimal solution [3]. 

 

 A simplification can be made by considering the permutation schedules. A 

permutation schedule is one with the same job order kept on all machines. This will 

decrease the number of possible alternatives to N!. But, permutation scheduling can 

not guarantee optimality, and it may still be difficult to locate optima efficiently 

[5,19,20,26]. 

 

 Accordingly, search for optimal solutions by complete enumeration 

procedures is not practical. And it is wiser to use effective theorems, rules, and 

heuristic algorithms rather than optimization and enumerative methods. Several 

theorems and algorithms have been already developed. The collection of research 
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work concerned with the mathematical models and theoretical analysis related to 

scheduling is called the theory of scheduling [3,24]. 

 

2.1.3 The Theory of Scheduling 

 

 The theory of scheduling includes a variety of techniques that are useful in 

solving scheduling problems. The study of theory began in the early 1950’s. An 

article by S.M. Johnson in 1954 is acknowledged as pioneering work. It presented an 

efficient optimal algorithm for solving the problem of scheduling N jobs on two 

machines in a flow shop, and generalized the method to some special cases of 

scheduling N jobs on three machines [24,27].  

 

Jackson in 1955 and Smith in 1956 gave various optimal rules for single 

machine problems. These efforts formed the basis for much of the development of 

the classical scheduling theory. In the following years, several kinds of general-

purpose operations research techniques were applied. Meanwhile heuristic methods 

were being developed for problems, which were proven difficult. By the late of the 

1960s, the solid body of theory had emerged [27]. 

  

2.1.4 Scheduling Criteria 

 

 The goal of production scheduling is to define the optimal sequence of 

processing. Such a decision is accomplished with respect to a certain measure of 

performance, or a scheduling criterion. A measure of performance is usually a 

function of the set of completion times of jobs. If it is a non-decreasing function of 

completion times and is required to be minimized, the criterion is termed regular. 

Most of the scheduling criteria are regular. Following are some important related 

quantities employed in the scheduling criteria definitions [26]:  

 

1. Job completion time (Cj). Time at which all processing of job j is finished. 

2. Job flow time (Fj). Amount of time job j spends in the shop. Fj = Cj – rj . 



 

 

12 

3. Job lateness (Lj). Amount of time by which the completion time of job j exceeds 

its due date. Lj = Cj – dj. 

4. Job tardiness (Tj). Tj = max {Lj , 0}. 

 

Job lateness can be positive or negative. Negative lateness represents better 

service than requested, while positive lateness represents poorer services. In many 

situations, distinct penalties and other costs will be associated with positive lateness, 

but no benefits will be associated with negative lateness. Therefore it is often helpful 

to work with a quantity that measures only positive lateness, which is tardiness [26]. 

 

Some of the important criteria are the following [3,5,11,20,24,26,27]: 

 

1. Maximum flow time:                
j

N

1j
max FmaxF


  

2. Mean flow time:          



N

1j

jF
N

1
F  

3. Makespan. In static situations where rj = 0 for all jobs, flow time for each job is 

its completion time. The maximum flow time equals the greatest completion time 

which is denoted by Cmax.  

   
j

N

1j
max CmaxC


  

 

Cmax is known as makespan. It is the time span from the start of the first job on 

the first machine to the completion of the last job on the last machine. 

 

4. Maximum lateness or tardiness:  

 

 
j

N

1j
max LmaxL


   and           0,LmaxT j

N

1j
max


  

 

5. Mean lateness or tardiness. 
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and              L
N

1
L

N

1j

j


   



N

1j

jT
N

1
T  

   

6. The number of tardy jobs. If uj is a binary variable that equals 1 if Cj > dj  and 0 

otherwise, then the number of tardy jobs is  



N

1j

jT uN  

 

 Several other criteria exist. The selection of a criterion is based on the broad 

objective of the decision-maker. Makespan is the simplest to optimize and is 

commonly used [26]. 

 

 

2.2 FLOW SHOP SCHEDULING 

 

 In a flow shop M different machines exist, and each job is consisting of M 

operations, each requires a different machine. It is characterized by the unidirectional 

flow of work through the machines. The flow shop scheduling problem is relatively 

tractable compared to job shop scheduling [26]. 

  

First step of development for the solution of the problem dates back to 

Johnson’s work in 1954 for the 2-machine flow shop scheduling and its extension to 

the specially structured 3-machine problems, in which the second machine is 

dominated by the first and/or the third one [3,11,27]. 

  

2.2.1 Johnson’s Efficient Rule 

  

Minimizing makespan for the 2-machine flow shop problem is the basic 

problem in the field of flow shop scheduling. It is called Johnson’s problem. 

Johnson’s rule to solve this problem states that job x precedes job y in an optimal 

sequence if Min{Px1, Py2}  Min{Px2, Py1}. In practice an optimal sequence is directly 
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constructed with an adaptation of this rule [26]. An implementation of Johnson’s rule 

with respect to makespan is described as follows [3]: 

 

Step 1. Find the minimum processing time among the unscheduled jobs. Break 

tie arbitrarily. 

Step 2. If it requires machine 1 ( 2 ) position the associated job in the first ( 

last ) free position in the sequence. If all positions are filled then stop. 

Step 3. Remove the assigned job from consideration and return to Step 1. 

 

In applying Johnson’s rule, it is observed that the last job (N
th

) can’t be begun 

on machine 2 until all jobs have completed processing on machine 1. Hence one 

possible lower bound for the makespan is 



N)(

(1)j

(N)2(j)11 PPL  where (j) represents the 

job in position j in the schedule. Another lower limit L2 exists. Observe that non of 

the jobs can begin processing on machine 2 until the first job in sequence has 

completed processing on machine 1, then 



N)(

(1)j

(1)1(j)22 PPL . The higher of the two 

limits is controlling.  

 

The summations in both lower limits expressions are constant for any 

sequence. Only P(1)1 and P(N)2 are the affecting factors. Consequently, and as the 

sequence is developed gradually, it becomes logical to choose the lowest processing 

time Pjk and place job j first if k = 1, or last if k = 2 and proceed similarly with the 

remaining jobs [24]. This is how the Johnson’s algorithm works [24]. 

 

 Johnson had proven that his optimal 2-machine algorithm can be applied with 

respect to makespan if the maximum processing time on machine 2 is less than or 

equal to the minimum processing time on one or both machines 1 and 3. An artificial 

2-machine scheduling problem is created by summing the processing times for each 

job on machines 1 and 2 (to be the processing time on first fictitious machine) and for 
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each job on machines 2 and 3 (to be the processing time no second fictitious 

machine). Johnson’s rule is then applied to this artificial 2-machine problem to obtain 

an optimal solution for the original problem. 

 

2.2.2 Flow Shops with More than Three Machines 

 

 This is the general case. It is NP-complete. The optimal solution for it 

minimizing makespan is found using the branch and bound method developed by 

Ignall and Scharage in 1965. Still, this is impractical in real situations when the 

problem size increases. Besides, only permutation schedules are considered. 

Consequently, heuristic methods were developed to obtain near optimal solutions, in 

much less computational efforts. Heuristics are based on Johnson’s rule in many 

cases [3,24,26]. 

 

 Of the numerous heuristics are Petrove’s method, developed in 1966, which is 

the direct extension of Johnson’s efficient rule to the general flow shop scheduling 

problem, the CDS heuristic developed by Campbell, Dudeck, and Smith in1970, and 

the NEH heuristic developed by Nawaz, Enscore and Ham in 1983. CDS and NEH 

were identified as the best performing heuristics in flow shop scheduling 

[5,15,21,23,28,30,31]. 

 

2.2.2.1 Optimal solution for the general flow shop problem 

 

The branch and bound method is an implicit enumeration algorithm for 

iteratively finding optimal solutions to discrete combinatorial problems by repeating 

branching and bounding procedures. The application of the method to solving the 

large-scale scheduling problems assures optimality. However, only permutation 

schedules are considered and hence this is a sub-optimal solution in the true sense 

[3]. The two fundamental procedures follow [3,11]. 
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1. The branching procedure. Branching is represented by a tree similar to 

that shown in Fig.2.1. At level 1, each job becomes a node. At each node a lower 

bound on makespan is calculated. The node resulting in the smallest lower bound 

is selected for further branching by appending the remaining N-1 jobs to it hence 

moving to level 2 with N-1 nodes. Thus each node represents a partial schedule of 

the jobs and complete schedule is found at the N
th

 level. 

 

2. The bounding procedure. Bounding is the process of calculating a lower 

bound on makespan for each partial schedule generated at each node. The node 

with the lowest bound is promising and is considered for further branching.  

 

Fig.2.1 The branching tree for a four-job flow shop scheduling problem 

 

2.2.2.2 Petrov’s method 

 

 This method easily produces a fairly good job schedule. A single schedule is 

generated through the following steps [3]: 

 

Step 1. For j = 1,2,…,N, calculate the two fictitious processing times: 

All

J1 J2 J4J3
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2 2 2
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Lower Bound
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                     



h

1k

jk

1

j PP             and            



M

hk

jk

2

j PP   

 

Where h = M/2, h=h+1 for even M, and h = h= (M+1)/2 for odd M. 

Step 2. Apply Johnson’s algorithm to this artificial 2-machine problem. 

 

2.2.2.3 The CDS algorithm 

 

 This is a multiple application of Johnson’s rule. Its power lays in two 

properties (1) using Johnson’s efficient rule, (2) creating several schedules i.e. 

several chances of finding the optimal solution [28]. CDS provides for the generation 

of M-1 schedules through the construction of M-1 artificial 2-machine problems. In 

the k
th

 problem (k =1,2,…,M-1), the following two artificial processing times are 

calculated for each job j (j = 1,2,…,N): 

 





k

1m

jm

k

j1 machine fictitiousfirst on  j jobfor   timeProcessingPP  





M

k-1Mm

jm

k

j2 machine fictitious secondon  j jobfor   timeProcessintPP  

 

The CDS algorithm is implemented in the following steps [31]: 

 

Step 1. Set k = 1, for the first artificial problem. 

Step 2. Construct the k
th

  2-machine problem by calculating the two artificial 

processing times. 

Step 3. Apply Johnson’s rule to the k
th

 problem and obtain the k
th

 schedule 

and calculate its makespan. 

Step 4. If k < M-1 then set k = k + 1 and return to Step 2. 

Step 5. Identify the schedule with the minimum makespan from among the 

M-1 schedules as the best schedule.  

2.2.2.4 The NEH algorithm 
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 This heuristic assumes that a job with a higher total processing time needs 

more attention than a job with a lower total processing time. The schedule is 

developed gradually by appending jobs one by one to the existing partial schedule. 

The method is performed in the following steps [15,23,32]: 

 
 

Step 1. Compute for each job j the summation 



M

1k

jkj PP  and arrange jobs 

in the descending order of Pj. 

Step 2. Pick the first two jobs in the order in Step 1 and find the best 

schedule for these two jobs by calculating makespan for the two 

possible combinations of them. 

Step 3. Pick the job next in order and find the best its position by inserting it 

in each position in the existing partial schedule and checking 

makespan, keeping the relative positions of the scheduled jobs. 

Step 4. If there is no more jobs then stop, otherwise return to Step 3. 

 

 

2.3 TIMETABLING IN FLOW SHOP SCHEDULING 

 

 The following approaches are employed for timetabling and calculating 

makespan [3,11]: 

 

1. Graphical approach. By representing the schedule on Gantt chart, timing 

data can be read. Fig.2.2 shows the Gantt chart for a schedule for 4 jobs on 5 

machines. Completion times for jobs are read on the horizontal axis. Makespan is 

the completion time of the last job on the last machine. Fig.2.3 shows a part of a 

Gantt chart that explains how to calculate the start and completion times of a job. 

The rule is that a job can not be started on a machine unless the preceding job in 
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the schedule is completed on this machine (part A in Fig.2.3), or the job itself is 

finished on the previous machine (part B in Fig.2.3), the larger is taken. 

 

J1 J4 J2 J3

J
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J
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J
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g.2.2 Gantt chart for optimal schedule of 4 jobs on 5 machines 
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Fig. 2.3 Basics of calculating the completion time of the job in position r on machine k 

 

2. Mathematical formulae. Referring to Fig.2.3, the completion time of job in 

position r on machine k can be calculated by the following recursive formula:  

 

 
(r)k1-(r)k1)k-(r(r)k PC,CmaxC   

 

Position r is represented by (r). Actually, this is the mathematical representation 

of the rule used in the graphical method shown in Fig.2.3. Makespan is then 

given by: 
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 
(N)M1-(N)M1)M-(Nmax PC,CmaxC   

 

Another formulation of this recursive formula is reported in [17,18,30]. Letting  

be a partial schedule of some of the jobs, C(,k) be completion time of  on 

machine k, and  C(a,k) be completion time of job a on machine k after job a is 

appended to , the completion time of job a is computed by: 

 

 
ka,

P1)-k,aC(k);,C(maxk),aC(    

 

If the total flow time of the jobs in  is F, then the total flow time after 

appending job a to  is calculated by the following formula:  

 

Fa = F + C(a ,M) 

 

 

2.4 THE GROUP SCHEDULING MODEL 
 

 In the group scheduling; GS model, the N jobs are classified into F part 

families each contains ni jobs where 



F

1i

i Nn . Let the family index be i (i=1,2…F) 

and jobs in family i indexed by j (j =1,2…ni). Jobs are to be processed on M 

machines. The setup time of family i on machine k (k =1,2…M) is denoted by Sik and 

the processing time of job j in family i on machine k is Pijk. The machines are 

assumed grouped into a manufacturing cell. 

 

To show how the scheduling problem is simplified by GS consider a set of 

jobs; N = 10. Conventionally there are N! = 10! = 3,628,800 feasible schedules at 

each machine or 3,628,800 permutation schedules to be investigated. In GS, letting  F 

= 3; and the size of each family such that n1 = 4, n2 = 3, n3 = 3. The number of 

permutation schedules will be 



F

1i

i!nF!  =  !3!3!4!3   = 5184 that is only 14.82 % of 

N!. 
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Still, the GS problem is NP-complete. Efforts have been exerted to solve the 

problem in various environments. In the context of GS in flow-line cells and in flow 

shops as well, traditional flow shop scheduling algorithms have been modified for GS 

application where algorithms are to be executed in two stages for the two phases of 

GS [19]. 

 

2.4.1 Branch and Bound Solution for Group Scheduling 

 

In 1976, Hitomi & Ham employed the branch and bound technique to obtain 

the optimal solution for the GS problem in a static flow shop. The scheduling 

criterion is minimizing makespan. Their work was based on the earlier work of Ignall 

& Schrage developed in 1965. The modified version is a two-stage application of 

Ignall & Sharage’s model [19,21,23]. 

 

 In 1985, Hitomi et-al. [11] explained the use of the branch & bound 

optimizing methodology, emphasizing that, in GS, both optimal family and job 

sequences must be determined simultaneously, and hence a new type of branch & 

bound procedures is required. The procedure according to [11] is described as 

follows. Comparing this version with that presented in Sse. 2.2.2.1 explains the two-

phase nature of GS. 

 

1. Branching procedure. In GS, there occur two kinds of nodes: family nodes and 

job nodes. Branching of families and branching of jobs are both required. The 

branching of families is made first. Then jobs within each family are branched from 

each of the family nodes created. The branching of the jobs in each family is repeated 

until all  positions in that  family are filled. Actually, job branching in each family is 

an application of traditional branch and bound method. Afterward, new family nodes 

are created by branching the unscheduled families at the best found job node. Then 

job branching is performed and so on. The tree starts with family nodes and ends with 

job nodes. The branching tree will look like that in Fig.2.4. 
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Fig.2.4 The branching tree for the group scheduling approach  
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2. The bounding procedure. The bounding procedure is the process of calculating a 

lower bound on makespan for the partial schedules generated at each job node. The 

node with the lowest lower bound is considered for more branching by appending the 

unscheduled families to it to formulate new family nodes.  No lower bound is 

calculated at the family nodes.  

 

2.4.2 Simple Heuristic Solution for the Group Scheduling Problem 

 

Hitomi et-al. [11] introduced three optimizing algorithms for multi-stage 

especially structured GS problems, in which some well-defined relationships hold 

among the family setup times and job processing times at each machine. The problem 

according to them is reduced into an artificial two-machine problem to be solved by 

the application of Johnson's efficient rule. Further, they generalized Petrove’s 

heuristic to GS application to a obtain near-optimal  solution. In this generalization a 

sequencing index employing the summation of the family setup times and job 

processing times, is used to develop an artificial two-machine problem when 

developing the family schedule. In finding the job sequences within families, 

Petrov’s method is employed traditionally to the jobs within each family. 

 

 In 1988, Hitomi [13] used the modified Petrov's method to obtain a near 

optimal solution for scheduling F part families in a flow shop. The objective is to 

minimize makespan. The heuristic is used in the job phase at first to find jobs 

sequences within each family, then a families sequence is developed given the jobs 

sequences developed before. In the family phase, the sequencing indices for each 

family are the summation of the family setup time and the processing times of the 

jobs in it. 

 

In 1988, Grasso et-al. [21] reported that better results than those obtained 

using algorithms with setup time included, were obtained if setup times are separated 

from processing times in the heuristics, and this gave rise to the significance of GS. 



 

 

24 

They reviewed the work of Hitomi and co-workers to solve the GS problem in flow 

shops. Hence they state that the solution of GS problem can be simplified into the 

separated determination of job sequences within families, and the determination of 

families sequence. This does not take into account the possible interaction between 

the two phases of scheduling and hence leads to sub-optimal results. However, this 

simplification is useful in order to derive rapid and efficient GS heuristics from the 

setup time included heuristics. Consequently they proposed a four-level general 

framework for constructing GS heuristics employing the setup-time included 

procedures. The framework can be presented as follows: 

  

Step 1: Determine a good job sequence in each family utilizing a setup-time 

included sequencing algorithm. 

Step 2: On the basis of the methodology selected to derive the sequencing 

indices, define the sequencing indices for each family. 

Step 3: Calculate the values of the sequencing indices for each family. 

Step 4: Determine a good families’ sequence utilizing the setup-time included 

procedure to the sequencing indices. 

 

 The effectiveness of this model depends on the methodology of defining the 

sequencing indices, and on the selected setup-time included heuristic that need not 

necessarily be better performing in the conventional scheduling. In addition Grasso 

et-al. classify the scheduling heuristics in two classes: single-shot that generate a 

single schedule, and multi-shot that generate several schedules one schedule of them 

is to be selected as best. They provided different variations for the Johnson’s rule and 

the CDS heuristics modified according to the proposed general framework using 

different formulations of the sequencing indices. 

  

In 1990 Allison [19] followed another approach to develop GS heuristics by 

combining two different traditional methods using one of them in each GS phase for 

scheduling F part families in a flow cell. He indicated that some researchers use the 
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flow shop scheduling heuristics for GS starting with job phase and then switch to the 

family phase. Others start with family phase and then job phase. Alison classified the 

scheduling heuristics, as in [21] into single-pass, and multiple-pass heuristics, stating 

that single-pass heuristics are generally inferior, but require less computational 

efforts and he suggests a compromise approach to combine the two types of 

heuristics. 

 

The question addressed by Alison is that where should the superior method 

(the multiple-pass) be employed; in job phase or in the family phase? He combined 

CDS and Petrov's method in four ways to study answering this question. The four 

combinations are Petrov/CDS, CDS/Petrov, Petrov/Ptreov and CDS/CDS, in each, 

the first is used in job phase and the second is used in family phase. The objective is 

minimizing makespan. Results showed that investing greater computational efforts by 

the use of the multiple-pass methods, in sequencing families yields better results, 

which means that the family phase is more important than the job phase. The number 

of jobs in each family does not strongly affect the relative performance of the 

heuristics. 

 

In 1991, Wommerlov and Vakharia [23] considering the scheduling of a flow 

line cell that is dedicated for processing of a number of part families, they provided 

modified versions of CDS and NEH heuristics for GS situations. In both, the first 

phase is the families sequencing and the second is sequencing job within the families. 

The two methods were compared with the original heuristics and with some 

dispatching rules. It was found that the conversion from traditional scheduling to GS 

is generally advantageous in all operating environments considered, and in addition, 

picking the “wrong” scheduling procedure is less serious for procedures considering 

the part-family membership, than for job rules that ignore the part-families 

information, which is an added advantage to the GS model. 

 

2.4.2.1 Hitmi’s heuristic 
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Phase 1: Job sequencing in each family 

 

1- For each job j in family i, calculate the sequencing indices: 

 

A  =   P
ij ijk

k=1

h

  and    


M

h=k

ijkij P  = B  

 

              where  1 h   h , 2 / M h   for even M, and 2 / 1)  (M  h h   if M is odd 

 

2- Apply Johnson' s rule to A  and  B
ij ij

 to obtain a sequence of jobs 

within each family. 

 

Phase 2: Families Sequencing 

 

1- For each family i, calculate the two artificial family processing times: 

 

  






h

1=k

n

1j=

ijkik i

i

 P  + S   = A       and       









M

h=k

n

1j=

ijkiki

i

 P  + S   = B  

 

2- Apply Johnson' s rule to A  and  B
i i

 to obtain a family sequence. 

 

2.4.2.2 GS-CDS heuristic 

 

 The heuristic constructs M-1 artificial 2-machine problem in the family phase 

and M-1 2-machine problems within each family in the job phase. Make denotes 

makespan. Families are treated as fictitious jobs having processing times as given in 

Step 3. In the job phase the procedure is actually an application of the traditional 

CDS for the jobs within each family, given the family sequence found in phase 1. It is 

applied in each family independent of the other families. 
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Phase 1: Family sequencing  

 

Step 1. Set x = 1, where x is the subproblem index. Let Make

 = . 

Step 2. If x  M then switch to Phase 2,  else  go to Step 3. 

Step 3. Calculate for each family  i two artificial family processing times: 

 

        






x

1=k

n

1j=

ijkik

x

i

i

P  + S   = A     ,     






M

1+x-M=k

n

1j=

ijkik

x

i

i

P  + S   = B   

Step 4. Apply Johnson's rule and generate a families sequence. Let the total 

flow time  be Makex 

Step 5.  If Make
 x-1

  Makex  then  Make
x
 = Makex, and keep the sequence. 

Else   Make
x
  =  Make

x-1
 

Step 6. Set  x = x + 1 ,  and go to  Step 2 

 

Phase 2: Job sequencing within each family  

 

Step 1.  Set  i  =  1 

Step 2. If  i    F + 1  then  stop,  else  go to Step 3 

Step 3. Set x = 1 ,  Make

  =   

Step 4. If  x    M  then  go to Step 8,  else  go to Step 5 

Step 5. Calculate for each job j in family i , for the x
th

 subproblem, the two 

artificial processing times on the first and second artificial machines 

as follows: 

 
                       A  =   P

ij

x

ijk
k=1

x

     and    B  =   P
ij

x

ijk
k=M-x+1

M

  

Step 6.  Apply Johnson's rule and find a job sequence.  

Let total flow time be Makex. 

Step 7. If Make
x-1

  Makex  then  let Make
x
 = Makex and keep the 

sequence; Else let   Flow
x
 = Flow

x-1
. Set x = x + 1, and go to Step 4 

Step 8. Set i = i + 1 and go to Step 2 
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2.4.2.3 GS-NEH heuristic 

 

 As in the CDS, families in phase 1 are treated as fictitious jobs having 

processing times Pik, as in Step 1. The families sequence is kept during the second 

phase. In the second phase the traditional NEH is applied to jobs within each family 

independently of the other families. 

 

Phase 1: Family Sequencing 

 

Step 1. Calculate for each family  i: 

 

               









M

1=k

ikiik

n

1j=

ijkik P  = T         and          S  P   = P
i

 

Step 2. Arrange families in descending order of Ti.  

Let  be an index for this ordered list of families. 

Step 3. Pick the first and second two families in the list and find the best 

sequence for them. Set  = 3.  

Step 4. If   = F +1 then switch to Phase 2, else go to Step 5. 

Step 5. Pick the family in the 
th

 position in the list. Find the best position 

for it by inserting it in each of the  positions in the partial sequence 

found in the previous trial, without changing the relative positions of 

the previously assigned families. Set  =  + 1 and go to step 4. 

 

Phase 2: Job sequencing within families. 

 

Step 1. Set i = 1 

Step 2. If i = F + 1 then stop, else go to Step 3. 

Step 3. For each job j in family i calculate: 

                                           
M

1=k

ijkij P  = T  
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Step 4. Rank jobs in descending order of Tij. Let  be an index for this 

ordered list. 

Step 5. Pick the two jobs in the first and second positions in the list, and 

find the best sequence from the two possible sequences for the two 

jobs by calculating makespan for them. Set  = 3. 

Step 6.  If   ni + 1 then go to Step 8, else go to Step 7. 

Step 7. Pick the job in the 
th

  position in the list and find the best sequence 

by inserting it in each of the  positions in the partial sequence 

found in the previous trial, without changing the relative positions of 

the previously assigned jobs. Set  =  + 1 and go to Step 6. 

Step 8.  Set i = i + 1, and go to Step 2. 

 

2.4.3 Iterative Improvement Techniques to Solve the GS Problem 

 

 The drawback of the simple GS heuristics is that they are not able to consider 

the possible phase’s interaction of GS. In addition, the number of solutions generated 

is small while the problem is combinatorial. With the increase of computer 

capabilities, researchers developed iterative improvement techniques to solve the GS 

problem. The iterative methods seem able to consider the phase’s interaction. 

Besides, the number of solutions investigated is larger. Of the generic techniques 

applied are the simulated annealing (SA), the tabu search (TS) and the genetic 

algorithm methods. 

 

2.4.3.1 Simulated annealing heuristic 

 

 Simulated annealing (SA), is a randomized improvement algorithm that has 

been used to derive near global optimal solutions for combinatorial intractable 

problems. It was originally developed as a simulation model for a physical annealing 

process (hence the name “simulated annealing”). Simply speaking it is an iterative 

improvement technique, in which an initial solution is repeatedly improved by 
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making small local alternations until no such alternation yields a better solution. SA 

randomizes this procedure in a way that allows for occasional changes that worsen 

the solution in an attempt to reduce the probability of becoming stuck in a poor but 

locally optimal solution. The basic concepts of SA were developed by Kirkpatrick et-

al. in 1983 [15, 17, 33, 34]. 

 

In 1993, Sridhar and Rajendran [17] proposed a SA heuristic, for scheduling a 

single family flow cell with the objective of minimizing total flow time. The heuristic 

is in two steps: first is to generate an initial good sequence using a flow shop 

algorithm which they believe to be a good initial seed generator with respect to flow 

time. They prefer to use a good initial solution to using a random one as usually done 

with SA applications. The second level is an iterative improvement procedure by the 

SA. They concluded that iterative improvement heuristics are effective in tackling 

problems that are computationally intractable. They recommended using an 

acceptance probability with SA that is dependent on the change in the objective 

function value. 

 

In 1990, Vakharia and Chang [15] provided another SA based heuristic for the 

scheduling in a static flow line cell. The cell is dedicated for the processing of a 

number of part families. The objective is to minimize makesapn. They start with a 

random initial schedule and iteratively improved it using the SA approach. They used 

an acceptance probability that is independent of the change in the objective function 

value. The proposed SA heuristic is structured to spend 90% of the iterations in the 

job phase and 10% in family phase. The heuristic is presented later. 

  

 Principles of SA can be presented as follows. It is based on the analogy 

between the annealing of a solid and the optimization of combinatorial problems. 

Solids are annealed by raising the temperature to a maximal value at which particles 

randomly arrange in the liquid phase, followed by cooling to force particles into a 

low-energy state of a regular lattice. At high temperatures all possible states can be 
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reached. Lowering the temperate decreases the number of accessible states and the 

system finally will be frozen into its ground state. In combinatorial optimization, a 

similar situation takes place. The system may occur in many different configurations. 

Any configuration has a cost that is given by the value of a relevant cost function. 

Similar to the simulation of the annealing of solids, one can statistically model the 

evolution of the system that has to be optimized into a state (configuration) that 

corresponds to the minimum value of the cost function [17]. 

 

 In its usual form, SA algorithm starts off from an arbitrary initial 

configuration. In each iteration, by slightly perturbing the current configuration a new 

configuration is generated. The difference in cost between the two configurations is 

compared with an acceptance criterion that tends to accept improvements but also 

admits, in a limited way, deteriorations in cost. Initially, the acceptance criterion is 

taken such that deteriorations are accepted at a high probability. As the optimization 

process proceeds, the acceptance criterion is modified such that the probability of 

accepting deteriorations decreases. At the end of the process the acceptance 

probability is zero [33]. 

 

 Temperature is simulated as a control parameter that acts like an iteration 

counter for the algorithm. Temperature is successively reduced by means of a 

reduction factor. When temperature reaches a pre-specified value (the freezing 

temperature) the procedure is terminated. At every temperature step, iterations are 

carried out for a number of times in search for better solutions [17].  

 

The strength of the method lies in the fact that inferior solutions are accepted 

with a certain acceptance probability (AP) with the hope that the algorithm can clear 

local optimal troughs and find global optima. The standard and original choice for the 

acceptance criterion is given at any temperature step t by the Metropolis formula as 

[33]:  
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
















 



0   if                    1

0   if        
X

-
exp

 APx  

 

Where  is the change in cost between the current configuration and the new 

one generated from it. The advantage of having the acceptance probability dependent 

on the change of the cost function is that solutions that cause drastic changes in the 

cost are avoided at the lower temperature changes [17]. 

 

The algorithm is generic and needs to be modified in the context of the 

problem in hand. A generic SA algorithm is given below for a minimization problem 

[17]. 

 

Step 1. Get an initial solution S. 

Step 2. Get an initial temperature T > 0. 

Step 3. While not yet frozen do the following. 

 Step 3.1. Perform the following loop L times. 

  Step 3.1.1 Pick a random neighbor S of  S.  

  Step 3.1.2 Let  = cost( S ) – cost( S ). 

  Step 3.1.3 If    0  then set S = S  

  Step 3.1.4 If   0 then set S = S with probability 

exp(-/T) 

 Step 3.2. Set T = rT  , (where r is a reduction factor) 

Step 4. Return S  

 

SA was applied in [15] for GS starting with an initial schedule developed 

randomly. The initial schedule is perturbed using a pair-wise interchange of jobs or 

families in order to find a neighbor solution to the current one. During search 

process, an inferior solution may be accepted to replace the current solution, 

according to the value of the acceptance probability. The acceptance probability is 
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simply set to an initial value and is reduced each iteration by a constant reduction 

factor such that it reaches zero at the end of the iterations. The acceptance probability 

is independent of the change in the objective function value. 

  

A switch parameter to direct the search process either to family phase or to the 

job phase is employed. This parameter is expected to have significant effect on the 

performance of the heuristic. Its value of 0.1 used in [15] leads to spending 90% of 

the iterations to the job phase, and 10% to the family phase. Parameters and variables 

used in this SA algorithm in [15] follow.  

 

X : The number of iterations (X = 25) 

Y : Number of searches per iteration (Y = 50) 

AP : Initial value for the acceptance probability (AP  = 0.5) 

GP : Switch variable between the two phases.  

A random number is sampled, if less than GP, the family sequence is 

perturbed, else job sequence is perturbed. 

 : The reduction factor of the acceptance probability  = AP / X.  The 

acceptance probability for iteration x is   X/AP - AP = AP 01-xx  

 

 The SA heuristic is described as follows where Make is makespan. 

 

Step 1. Set X, Y, AP, and GP. Set   = AP / X. 

Step 2. Generate a random schedule. This includes a complete sequence for all 

jobs (

), a family sequence ( ) and a sequence for jobs within each 

part family (f); where f = 1, 2 , ... , F  and let this be the current 

solution with a makespan Make

. Let 

*
 represent the incumbent 

solution with makespan Make
*
.  Let 

*
 = 


 and Make

*
  = Make


. Set x 

= 0. 

Step 3. Let x = x + 1. If x  X  then  stop, else set y = 0 and continue. 
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Step 4. Set y = y + 1. If y  Y then set - AP = AP x1+x    and go to Step 3,  

Else go to step 5. 

Step 5. Generate a random number  (0    1). If   GP, then go to  

Step 7. Else go to Step 6 

Step 6. In this step the order of jobs within each family will not change.  

Generate a random number 1 (1  1  F). Interchange the family in 

position 1 with that in position 1+1 (if 1 = F, interchange the family 

in position F with that in position 1) and generate a family sequence 
1
.  

Based on 
1
 specify a new complete job sequence 

1
 and calculate 

Make
1
. 

 (a) If Make
1
  Make

*
 then go to (b), else let 

*
 =  

1
 in the 

incumbent solution, set Make
*
 = Make

1
 and go to (b). 

 (b) If Make
1
  Make


 then go to (c), else let  =  

1
 , 


  

1
 in the 

current solution and set  Make

  =  Make

1
 and go to Step 4. 

 (c) Generate a random number 2 (0  2  1). If 2    AP
x
 then go 

to Step 4, else let 

 =  

1
 ,  =  

1
 in the current solution, and set 

Make

 = Make

1
 and go to Step 4. 

Step 7. In this step the sequence of part families stays the same.  

Generate a random number 1 (1  1  N), where N is the total 

number of jobs in all the families. Let f1 be the family in which job 1 is 

included. Interchange the job in position 1 with that in position 1+1 

(if  1 is the last in the family f1, interchange job in position 1 with 

that in  

Position 1 for the same family f 1) in 

 . Let the new sequence be 

1
f1

 

for family f1 and the new complete sequence be 
1
 with Make

1
. 

 (a) If Make
1
  Make

*
  then go to (b), else let 

*
 =  

1
 in the 

incumbent solution, set Make
*
 = Make

1
 and go to (b). 

 (b) If Make
1
  Make


 then go to (c), else let f1

 = 
1

f1
 , 


  

1
 in 
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the current solution, and set Make

 = Make

1
 . Go to Step 4. 

 (c) Generate a random number 2 (0  2  1). If 2    xAP  then go 

to Step 4, else let f1
 =  

1
f1

 and 

  

1
 in the current solution, 

and set Make

 = Make

1
 and go to Step 4. 

 

2.4.3.2 Tabu search heuristic 

  

In 1993, Kapov and Vakharia [12] developed an iterative algorithm based on 

the tabu search (TS) approach, for GS in a flow line cell dedicated for the processing 

of a number of part families. The objective is the minimization of makespan. TS is a 

meta-strategy developed to improve the solvability of the hard combinatorial 

optimization problems. The proposed algorithm iterates between the two phases of 

scheduling, keeping a limited track of the search trajectory in order to guide the 

search out of the local optimum. Short-term-memory containing information about a 

predefined number of recent iterations is employed so that a gain in a recent iteration 

is not wasted in the next near iterations, and hence avoiding being trapped in local 

optima.  

 

In addition, a long-term memory is used to restart or rerun the procedure for a 

predefined number of times (e.g. 5), by the generation of a new initial family 

sequence using the information gathered during the search iterations in the long term 

memory in the previous run. However, in [12] job sequences within families are 

randomly set after the development of the new family seed solution, which does not 

seem logical. 

 

 TS has its origins in combinatorial optimization procedures applied to some 

non-linear problems in the late 1970s, and subsequently applied to a divers collection 

of problems. It is an adaptive procedure with the ability to make use of other 

methods, which it directs to overcome the limitations of local optimality. It helps 

guide such methods (may be as a subroutine), to continue exploration without falling 
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back into a local optimum. Latest search and computational comparisons involving 

travelling salesman problem, graph theory, integrated circuit design and timetabling 

problems has likewise disclosed the abilities of the TSto obtain high quality solutions 

with modest computational effort, generally dominating alternative methods tested 

[35,36].  

 

The strategic principles of the TS in a broader sense have been laid out in [35, 

37]. These are summarized hereafter.  

 

Consider a combinatorial optimization problem given by :  Min  c (x) : x  X . 

Where X is the set of vectors that can be feasible solutions, and c(x) is the value of a 

relevant penalty function designed to assure optimality or, simply, it is the objective 

function. 

 

 Given a trial solution x  X, let s be a move that leads from one trial solution x 

to another solution in the neighborhood of x. Simple definition of a move is that it is 

a transition between solutions [36]. For each x  X  there is a set S(x) that consists of  

all those moves s  S applicable to x, that is:  

 

    S x  =   s  S  :   x  X s     

and 

     x S   s   :   X x   s X   

  

Consider the following simple hill climbing heuristic. 

 

Step 1. Select an initial x  X 

Step 2. Select some s  S(x) such that  c(s(x)) < c(x) .  If no such s exists 

then x is a local optimum and method stops, else continue to Step 3 

Step 3. Let x = s(x) and return to Step 2 
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This means that: start with a solution x and apply moves to it. If exists, take 

the new solution s(x) resulting from applying s to x such that the value of the 

objective function of s(x) is better than that of x , and let it be the current solution. 

Otherwise, this x is a local optimum and the search process stops. The algorithm is 

very simple but the local optimum may not be the global optimum. TS then guides 

such a heuristic to continue exploration without falling in a local optimum, and to 

overcome the absence of feasible moves. 

 

In order to avoid local optimum, a subset T (called tabu-list), of S is created 

whose elements are called tabu (forbidden) moves. That is some moves applicable to 

x may be prevented if they are included in T. Elements of T are the moves (or 

solutions) those violates a set of tabu conditions (e.g. linear inequalities or logical 

relationships) i.e.  

 

    T x  =   s  S  :  s x   violates the tabu conditions   

 

 The tabu conditions are defined in the context of the application. The list T 

reflects the recent move history of the search [36]. The size of T is t. It may be fixed 

and may be variable. Thus elements of T are determined based on historical 

information from the search process, extending back to t iterations in the past. 

 

 Given T and employing an evaluation function denoted by OPTIMUM that is 

used to help selecting new current solutions, a simple TS heuristic follows. 

 

Step 1. Select an initial x  X and let  the best solution be x
 
= x. 

Set the iteration counter k = 0 and begin with T empty. 

Step 2. If  S(x) – T  is empty, go to Step 4. 

Otherwise, set k = k +1 and select sk  S(x) – T such that  

sk(x) = OPTIMUM(s(x) : s S(x) - T) 

Step 3. Let x = sk(x) . If c(x) < c(x

) then let x


 = x.  
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Step 4. If the chosen number of iterations has elapsed either in total or since 

x

 was last improved, or if  S(x) – T =  upon reaching this step 

directly from Step 2, then stop. Else update T and return to Step 2. 

  

In the above heuristic, in iteration k there is a solution x on which the 

applicable moves are performed. The move, which leads to the best result with 

respect to OPTIMUM, is chosen. This move sk(x) is used to update T while the 

solution reached by it becomes the new current solution. That is; at each iteration the 

best move is chosen not an improving one. This is reasonable since the previous 

current solution has been consumed up and all moves applicable to it were 

performed. Keeping it means being in a local optimum. There is nothing to do but to 

move from this current solution to another one, whatever it is, hoping that from this 

new one, a better solution could be accessible. A natural choice of OPTIMUM is 

given by selecting sk(x) such that: 

 

c( sk( x ) ) = Minimum ( c( s( x ) )  :  s  S( x ) - T ) 

 

This simple rule that selects the minimum c(s(x)) subject to tabu conditions 

has in fact proved successful in a variety of applications [35]. A similar 

straightforward but effective form of the set T is given by: 

 

 T =   s   :   s =  s   for  h >  k -  t -1

h
 

 

Where k is the iteration index and s
-1

 is the inverse of move s, thus s
-1

(s(x)) = x. That 

is T is the set of those moves that would reverse ( undo ) one of the moves made in 

the t most recent iterations. Consequently, the goal more general is to avoid returning 

to a previous solution state, e.g. to a previously visited solution where the best 

available move for leaving it will be the same as before. Each iteration, T is updated 

each iteration by setting T =  T -  s  +  s
k-t

-1

k

-1 . The minus and plus signs indicate 
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deleting and appending elements to T. Upon appending a new element to T the oldest 

element is removed. 

 

 Another important component of TS is the aspiration level function. The role 

of the aspiration level function is to provide added flexibility to choose good moves, 

by allowing the tabu status of a move to be overridden if this aspiration level is 

fulfilled. The aspiration level for a specific tabu move is fulfilled if c(s(x)) < Best 

(c(x) ), i.e. the OPTIMUM function value for that move is better than the overall best 

existing value. This tabu move is then performed. 

 Intermediate and long term memories (ITM and LTM) are another two 

components of the TS, the functions of which are to achieve regional intensification 

and global diversification of the search. The tabu-list T fulfills the function of a short 

term memory. 

 

 ITM records and compares features of the best trial solutions generated during 

a particular period of search. Features that are common to all or the majority of the 

best trial solutions are taken to be a regional attribute of a good solution. The method 

then seeks new solutions that exhibit these features by correspondingly restricting the 

available moves during a subsequent period of regional search intensification. For 

example, in the traveling salesman problem any current solution will incorporate 

some of the total edges in the problem. After some initial number of iterations, the 

method can identify those edges which are often contribute to the good solutions, 

hence discarding the other edges not incorporated in any tour and devoting itself to 

the resulting smaller problem. 

 

 LTM diversifies the search based on principles that are roughly the reverse of 

those for the ITM. The latter focuses more intensively on regions that contain good 

solutions as experienced during the search process. LTM guides the process to 

regions that contrast with those examined so far. For a traveling salesman problem, a 

LTM is a count of the number of times each edge appears in the trial tours generated 
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during the search process, and new good starting solutions are generated such that 

tending to avoid those edges most recently used before, and search at new regions.  

 

 Kapov and Vakharia [12] define the elements of the TS as applied to GS as 

follows. Let  be a complete feasible schedule that consists of a sequence of part-

families and a sequence of jobs within each family. There exist two neighborhoods 

for : 

 

Ni () Obtained from  by exchanging families in positions i and i + 1,  

Where i = 1,…,F-1, keeping the order of jobs within families. 

If I = F then exchange the last and the first families in . 

Nj () Obtained from  by exchanging jobs j and j + 1 in family i, keeping the 

oreder of families unchanged, where i = 1,…,F; j = 1,…, ni –1.  

If j = ni then exchange the last and first jobs in the family i.  

 

 Let the transition from  to Ni() termed f-move (for family-move), and 

transition from  to Nj() termed j-move (for job-move). A value of a move is the 

difference between makespans after and before the move. Iteration is completed 

when the whole neighborhood of a current schedule is evaluated and the best move is 

identified and performed. 

 

 Two types of tabu-list are used to contain information necessary to forbid a 

number of recent moves, say t moves. The f-tabu-list contains families that were 

moved from position i + 1 to position i  in the t recent iterations, hence a family being 

in the list can't be moved back to position i + 1. Similarly, j-tabu-list is used for j-

moves. The procedure will iterate between the two types of moves. When there are 

no improvements in a predefined number of f-moves, j-moves are performed. If no 

improvement during a predefined number of  j-moves, return to f-moves, and so on 

until a stopping criterion is reached.  
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Both fixed tabu-list size and variable tabu-list size were addressed in [12]. The 

variable list size was found better and was recommended. It is operated as follows. 

Given an initial tabu-list size, if there is no improvement in the prescribed number of 

iterations, decrease the list size to intensify the search in the current region. 

Following that, when there is no improvement in the prescribed number of iterations, 

increase the list size to diversify the search.  

 

Specifically, the heuristic starts by performing f-moves with the initial f-tabu 

list size of Int( F/2 ). If there is no improvement in the last 5F iterations, the list size 

is decreased to Int( F/3 ). After 2F iterations performed without improvement the list 

size is increased to Int( F/0.5 ). After 3F iterations without improvement, the initial 

list size is retained and the process switches the job phase and j-moves are performed. 

The initial j-list size is   Int( N/F ).  After  Int( N/3) iterations without improvement  

decrease  the  list  size  to Int( N/2F ). After more Int( N/3 ) iterations without  

improvement  increase the list size to Int( N/0.5F ) and after another Int( N/3 ) 

without improvement retain the initial size and return to the family phase. 

 

 Kapov and Vakharia used ITM and LTM. Both were called LTM. Both are 

based on frequencies (i, p), denoting the number of times a family i occupied position 

p in trial schedules during the search process. Initially it is a zero F x F matrix. Each 

time a new current solution is constructed, the entries of the frequency matrix 

corresponding to families and their respective positions in the current schedule are 

increased by one.  

 

LTM is used to create a new starting family sequence. The heuristic is 

restarted a number of times with the new starting solution generated using LTM. 

LTM based on maximal frequencies; termed LTM_MAX, (actually ITM) is used to 

provide search intensification by creating a new starting family sequence by 

following the procedures below: 
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1 . Take the maximal entry in the LTM matrix, say ( i1 , p1 ) and fix the family 

i1 in the position p1. 

2 . Delete the row i1 and the column p1. 

3 . Repeat 1 and 2 until a new family sequence is cereated. 

4 . Jobs are randomly scheduled within families.  

 

A LTM_MIN was used instead of LTM_MAX, involving taking the minimal 

entry in the matrix instead of the maximal entry. This corresponds to the use of LTM 

in the basic TS. LTM_MAX was found preferable in [12].  

 

The commonly used criterion for defining the aspiration level function was 

employed in [12]. It is to perform a tabu move if the resulting makespan is better than 

the best previously found. 

 

The TS heuristic using variable tabu list sizes and a LTM_MAX is described 

below. The number of the LTM restarts is five, that is the heuristic is rerun five times 

at the beginning of each time a new initial solution is generated using LTM_MAX.  

 

Step 1. Initialize the f-tabu-size and j-tabu-size. Set the required number of 

LTM restarts. Set LTM matrix = 0. 

Step 2. If LTM = 0  then generate a random families sequence, Else generate a 

families sequence using LTM_MAX. Complete the schedule by 

randomly generating a jobs sequence within each family. Let this be 

current solution 

 with makespan Make


. Let 

*
 represent the 

incumbent solution with makespan Make
*
. 

 Set 
*
 = 


 , Make

*
  = Make


 and LTM = LTM + 1. 

Step 3. Start counting iteration for family exchange. Set f-iter = 0. 

Step 4. Stopping criterion for family exchanges: 

 (a) If no improvement in the last 5F iterations with the initial f-list 

size then decrease the f-list size and go to (b). 
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 (b) If no improvement in the last 2F iterations with the decreased f-

list size then increase the f-list size and go to (c). 

 (c) If no improvement in the last 3F iterations with the increased  

size then set the list size to its initial  value and go to Step 6.  

 IF at any point there is an improvement  then go to Step 5  

Step 5. Family exchange phase of search. 

Evaluate completely the neighborhood Ni (

) and select the best 

exchange of families. Denote the new complete sequence by 

 and its 

makespan by Make
1
. If Make

1
 < Make

*
  then set 





  and  Make

*
 = 

Make
1
. Set  

 
  


, Make

 
 = Make

1
 and go to Step 4. 

Step 6. Start counting iterations for job exchanges.  

Set j-iter = 0 and go to Step 7. 

Step 7. Stopping criteria for job exchanges. Set j-iter = j-iter + 1. 

 (a) If no improvement in the last Int(N/3) iterations with the initial j-

list size then decrease the j-list size and go to (b). 

 (b) If no improvement in the last Int(N/3) iterations with the 

decreased j-list size then increase the j-list size and go to (c). 

 (c) If no improvement in last Int(N/3) iterations with the increased 

size then set the list size its initial  value and go to Step 9.  

 If at any point  there is an improvement  then go to Step (8) 

Step 8. Job exchange phase of search. 

Evaluate completely the neighborhood Nj (

) and select the best 

exchange of jobs. Denote the new complete sequence by 

 and its 

makespan by Make
1
.  If Make

1
 < Make

*
  then set 





 ,  

Make
*
 = Make

1
. Set  

 
  


, Make

 
 = Make

1
 and go to step 7. 

Step 9. If the incumbent solution was changed during the job exchange phase of 

search (Step 8), then go to Step 3.  If the required number of LTM 

restarts has been performed then stop the search, else go to Step 2. 

 

2.4.3.4 Genetic algorithm 
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In 1994, Sridhar and Rajendran [18] proposed a genetic algorithm for GS in a 

flow line cell. The cell is dedicated for the processing of a number of part families. 

The objective is minimizing makespan, followed by minimizing the total flow time 

and finally the bi-criteria of minimizing the makespan and total flow time. The 

algorithm is relatively complex, executed in three steps. In the first step, two 

conventional flow shop heuristics; the NEH, which minimizes makespan, and another 

one referred to as RC (developed by Rajendaran and Chaudhuri in 1992), which 

minimizes the total flow time, are used to develop two families sequences. By 

applying pair-wise adjacent interchange to each sequence, two family chromosomes 

are formulated, each consists of F sequences.   

 

Step two is job sequencing within families. NEH and RC are modified for cell 

scheduling such that the sequencing indices in each of NEH and RC are divided by 

the number of the non-zero operations for the job in hand. The modification is 

supposed to account for the zero processing times in the cell. Each of the heuristics is 

then, applied separately and independently to each family to generate two job 

sequences in each family. Then the complete job sequence chromosomes, which are 

the complete schedules for all jobs are developed, given the families chromosomes 

developed earlier. Hence, 8 complete job chromosomes are developed, four of them 

minimize makespan and four minimize total flow time. In the third step, matching 

and search procedure of the genetic algorithm approach is followed by mixing 

chromosomes to formulate new sequences (generations) in order to find better 

schedules.  

 

The genetic algorithm search procedure is applied in the family level for a 

number of iteration, and then is applied to the job level for a number of iterations. 

Besides, heuristics are used within each family independently of the other families. 

Thus, the procedure does not seem to account effectively for the phases’ interaction. 
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2.4.4 Timetabling In Group Scheduling 

 

Makespan is the commonly used scheduling criterion in GS. However, it was 

indicated in [26] that in general flow shop scheduling, minimizing makespan was not 

observed to be a particularly good method for minimizing the total scheduling costs. 

Sridhar and Rajendran [18] report that the flow time objective is a more significant 

objective than makespan. In [17] as well, they state that the minimizing total flow 

time is more relevant objective in the flow line based manufacturing cells. 

 

According to [17] and [30], makespan refers to the schedule completion time 

(time at which the last job finishes its final operation) while total flow time refers to 

the sum of jobs’ completion times. The minimization of total flow time results in 

minimum in-process inventory, stable utilization of resources, rapid turnaround of 

jobs, while minimizing makespan leads to minimizing production run length 

associated with uneven turnaround of jobs. 

 

The methods for calculating makespan and timetabling for GS are the same as 

for traditional flow shop problems. Only, the part family membership is considered. 

Graphical approach uses Gantt chart to represent the schedule, the start and 

completion times for each job and the start times of the families setups as well as 

makespan, are read on the horizontal axis. 

 

Hitomi [13] proposed a recursive formulation for timetabling for a number of 

part families in a flow shop in which makespan is given by: 

 

 
 
















F

1i

n

1j

(i)(j)k(i)Mmax

i

DQC  

 

 Where Qik is the summation of family i setup time on machine k and the 

processing time of all jobs in it on machine k, given by: 
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The completion time of job in position j within the family in position i on 

machine k is calculated by: 

 

  
 
















1-i

1h

j

1h

(i)(h)k(i)(h)k(i)k

n

1j

(h)(i)k(h)k(i)(j)k PDSDQC
h

 

 

Kapov and Vakharia in [12] proposed another recursive formulation for 

timetabling in a multi-family flow cell. However, in an attempt made by the author to 

implement this procedure, calculations could not be continued at step 5. In that step 

the start times for the last jobs in families 2 through F are needed. But these values 

are calculated later in step 7. Till step 5 only the start times for up to the last job in 

the first family is known. The procedures, however, is listed below.  

 

(1) The starting time of the first job of the first family in the sequence is equal to 

 The family setup time:  Start1,1,1 = S1,1. 

(2) For i = 1; j =1, k = 2,…,M: 

Start1,1,k = max{S1,k; Start1,1,k-1+P1,1,k-1} 

(3) For i = 1; j = 2,…,n1 ; k = 1: 

Start1,j,1 = Start1,j-1,1 + P1,j-1,1 

(4) For i = 1; j =2,…,n1 ; k = 2,…,M: 

Start1,j,k = max {Start1,j-1,k + P1,j-1,k ; Start1,j,k-1 + P1,j,k-1} 

(5) For i = 2,…,F ; j = 1; k = 1: 
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Starti,1,1 = i,11,n1,-i1,n1,-i SPStart
1-i1-i


 

(6) For i = 2,…,F ; j = 1 ; k =2,…,M: 
 

 1-ki,1,1-ki,1,ki,k,n1,-ik,n1,-iki,1, PStart ;SPStartmaxStart
1-i1-i


 

(7) For i = 2,…,F ; j = 2,…,ni ; k = 1: 

Starti,j,1 = Starti,j-1,1+Pi,j-1,1 

(8) For i=2,…,F ; j = 2,…,ni ; k = 2,…,M: 

Starti,j,k = max{Sarti,j-1,k + Pi,j-1,k ; Sarti,j,k-1 + Pi,j,k-1} 

  

Sridhar and Rajendran [17,18,30] notified that, in manufacturing cells jobs 

will not have to visit all machines, then processing times for some jobs on some 

machines are equal to zero, and this is a feature of the manufacturing cell makes it 

different the general flow shop
1
. Consequently, they reformulated a flow shop 

recursive timetabling formulation to be used in flow cells by accounting for the 

possibility of the zero times. Their work considers a single-family cell. The original 

formulation is found in Sec. 2.3. The modified formulation follows [18].  

 

Set C; completion time of job a on the previous machine, equal to zero. 

For k = 1 to M Do: 

        If Pak > 0 then  

  Completion time of job a on machine k is: 

C(a , k) = max { C; C( , k) } + Pak  

let C = C(a , k) 

                  Else     

  C(a , k) = C( , k) 

        End if  

The total flow time of jobs in a is updated as: 

  Fa = F + C 

And makespan of the partial schedule a is given by 

                                                           
1
 In 1974, Baker mentioned the possibility of the zero processing times in the general flow shops. 
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  C(a) = max { C() ; C } 

 

Sridhar and Rajendran in [17,30] provide a mathematical example for 

scheduling a single part family, to show the effect of not considering the zero 

processing times. They concluded that the consequence of not using a modified 

recursive procedure would be erroneous results and false engagement of machines 

with jobs that need no processing on them, and misleading estimations for makespan 

and total flow time. 

 

Another suggestion in [18,30] is to consider the zero times in the definition of 

the sequencing indices in the simple GS heuristics. The idea is to divide the index by 

the number of the non-zero operations for the job. The index is then termed effective 

sequencing index. They provide no explanation for this suggestion. Besides the 

modification is used in scheduling jobs within families and can not be used in the 

family phase if more than one family is scheduled. Called Rajendran’ s modification, 

this suggestion is tested in next chapters. 

 

 Rajendran in [30] proposes a heuristic for scheduling in a single-family flow 

line cell with respect to the bi-criteria of minimizing total flow time and minimizing 

makespan. The heuristic is developed for the flow shop scheduling and then modified 

for the flow line cell. The basic concept of the heuristic to is that partial schedule a 

is preferred to partial schedule b if  P     P
ak

k=1

M

bk
k=1

M

   where Pjk is the processing 

time of job j on machine k, and j is the partial schedule after appending job j to it. 

The relation seeks to identify and append the job with the lower value of the sum of 

processing times over all machines that is most likely to have the earliest completion 

time on the last machine.  
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Another preference relationship used is that a is preferred to b if  

      
M

1=k

bk

M

1=k

ak P 1 +k  -M      P 1 +k  -M   .  An initial seed solution is found at the 

beginning using the traditional NEH heuristic, and the preference relations are then 

employed in a pair-wise interchange fashion to search for the better sequence. 

Rajendran then modifies his heuristic for the application in the flow cell as follows. 

Instead of arranging jobs in the descending order of the summation of the processing 

times of jobs over the machines (in using NEH), the effective index is computed by 

dividing the summation by the number of the non-zero-time operations for the job 

involved. And similarly each sum in the preference relationships is divided by the 

number of the non-zero processing times for job a or b as appropriate. 

 

In [18] the effective indices were also employed to modify the NEH and the 

RC methods used in the job phase in the proposed genetic algorithm (See section 

2.4.3.4). In the other hand, the heuristic used to generate an initial solution for the SA 

heuristic in [17] for a single part family, was not modified although the zero 

processing times were in prospect. 
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CHAPTER 3 

 

PROPOSED MODIFICATIONS 

TO THE GROUP SCHEDULING HEURISTICS 

 

 Based on the literature review presented in Chapter 2, a number of GS 

heuristics are selected to study the relative performance of the different types of GS 

heuristics. Heuristics are classified according to the amount of calculations involved, 

into single-pass, and multiple-pass methods [19,21]. A third class is to be considered 

to include the iterative improvement techniques. Two aspects are given more interest: 

the presence of the zero processing times, and the two phase’s nature of the GS 

model. A number of modifications are proposed to improve the performance and 

investigate the capabilities of the heuristics with respect to the features of the GS 

model. A procedure for timetabling in a multi-family flow cell considering the zero 

processing times is proposed as well. The main assumptions apply to the study are: 

 

1. A static flow line cell is composed of M machines and is dedicated to the 

manufacture of N jobs classified into F part families is considered; 

2. Cell and part families have been identified satisfactorily; 

3. Machines are continuously available; 

4. Only permutation schedules are considered; 

5. Minor setup times are included in job processing times; 

6. Family setup times are not sequence dependent; 

7. No preemption is allowed and no relative priorities among jobs. 

  

 The selected methods and the proposed modifications are compared to each 

other with respect to makespan and total flow time separately. Heuristics are 

classified and the proposed modifications are listed below. 

1. The single-pass heuristics. Hitomi’s heuristic [13] is studied. It generates a single 

schedule. Hitomi is the GS version of Petrov’s method, which is the direct 
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extension of Johnson’s efficient rule to the general flow shop problem. It does not 

take into account the phase’s interaction. 

 

2. The multiple-pass heuristics. The two best performing simple flow shop 

scheduling heuristics, as modified for GS, are studied. These are the CDS and the 

NEH methods. The modified versions are presented in [15,23]. Neither of them 

can account for phase’s interaction of GS. 

 

3. The iterative improvement techniques. The simulated annealing (SA) [15] and the 

tabu search (TS) [12], heuristic approaches are studied. The iterative methods 

iterate between the two scheduling phases so that phase’s interaction is dealt with. 

 

 

3.1 THE SINGLE-PASS METHODS 

 

3.1.1 HIT-M 

 

This is a modified version of Hitomi’s method described in Sec. 2.4.2.1. The 

modification adopts Rajendran’s modification suggested in [17,18,30] (See Sec. 

2.4.4) that is supposed to account for the zero processing times in the structure of the 

heuristics. Step 1 in Phase 1 in the original Hitomi’s method in Sec 2.4.2.1 will be as 

follows. 

 

Step 1. For each job j in family i, calculate the sequencing indices: 

 

machinesh  on the j job of operations zero-non of No.

P

A

h

1k

ijk

ij


  

 

machines remaining on the j job of operations zero-non of No.

P

B

M

h k

ijk

ij


  
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               where  1 h   h , 2 / M h  for even M , and 2 / 1)  (M  h h  for odd M 

 

 

3.2 THE MULTIPLE PASS METHODS 

 

 Three new versions of CDS (Sec. 2.4.2.2) and one of NEH (Sec. 2.4.2.3) are 

proposed. In the listings below, “Flow” denotes the total flow time. “Make” is to 

replace “Flow” when using the heuristics for minimizing makespan. 

 

3.2.1 CDS-M-1 

 

 This is the original CDS employing Rajendran’s modification. The two 

sequencing indices in Step 5 in Phase 2 of the original CDS (Sec.2.4.2.2) are to be 

divided by the number of the non-zero operations for the job in hand. 

 

3.2.2 CDS-M- 2 

 

This is an iterative CDS heuristic. It returns to the family phase after 

completing job sequencing to search for a better schedule given the jobs sequence 

within each family. If the families sequence could be changed, the heuristic returns to 

the job phase given the new families sequence, and so on. CDS-M-2 is supposed to 

be able to take phases’ interaction in consideration. 

 

Phase 1: Families sequencing  

 

Step 1. Set x = 1, where x = 1,2,…, M-1. Let Flow

 = . 

Step 2. If x  M then switch to phase 2, else go to Step 3. 
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Step 3. Calculate for each family  i the two artificial processing times: 

 

        






x

1=k

n

1j=

ijkik

x

i

i

P  + S   = A     ,     






M

1+x-M=k

n

1j=

ijkik

x

i

i

P  + S   = B   

Step 4. Apply Johnson's rule and generate a families sequence.  

Let the total flow time  be Flowx 

Step 5.  If Flow
 x-1

  Flowx then let Flow
x
 = Flowx, and keep the sequence. 

Else   let Flow
x
  =  Flow 

x-1
 

Step 6. Set  x = x + 1 ,  and go to  Step 2 

 

Phase 2: Jobs sequencing within each family  

 

Step 1.  Set  i  = 1. 

Step 2. If  i    F + 1  then  switch to Phase 3,  else  proceed. 

Step 3. Set x = 1 and  Flow

  =  . 

Step 4. If  x    M  then  go to Step 8,  else  go to Step 5 

Step 5. Calculate for each job j in family i the two artificial processing times  

 
                       A  =   P

ij

x

ijk
k=1

x

     and    B  =   P
ij

x

ijk
k=M-x+1

M

  

Step 6.  Apply Johnson's rule and find a jobs sequence.  

Let total flow time be Flowx. 

Step 7. If Flow
x-1

  Flowx  then  let Flow
x
 = Flowx and keep the sequence; 

Else let   Flow
x
 = Flow

x-1
. Set x = x + 1, and go to Step 4 

Step 8. Set i = i + 1 and go to Step 2 

 

Phase 3: Families resequencing 

 

Step 1. Keep the complete schedule found in Phase 2, if coming from  

Phase 2,  (or in Phase 4 if coming from Phase 4).  

Let the total flow time be Flow. Set x = 1 and let Flow

 = Flow.  
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Step 2. IF x  M and a change in the complete schedule occurred in Phase 3 

then switch to Phase 4, Else if x  M and no change occurred in 

Phase 3 then stop, Else proceed.  

Step 3, 4,5, and 6 are the same as in phase 1. 

 

Phase 4: Jobs resequencing within each family 

 

Step 1. Keep the complete schedule found in Phase 3. Let total flow time be 

Flow. Set i = 1. 

Step 2. If i  F+1 and a change in the complete schedule occurred in Phase 

4 then switch to phase 3, else If i  F+1 and no change occurred in 

Phase 4 then stop, else go to step 3.  

Step 3.  Set x = 1, and let Flow

 = Flow. 

Step 4, 5, 6, 7, and 8 are the same as in Phase 2. 

 

3.2.3 CDS-M-3 

 

 This is CDS-M-2 employing Rajendran’s modification. The scheduling indices 

in Phases 2 and 4 in CDS-M-2  are divided by the number of the non-zero operations 

for the job in hand.  

 

In the implementation of the CDS, families in each family phase are treated as 

jobs, by computing the artificial processing time for each family i on each machine k 

as 
in

1j=

ikijkik S + P  =P . The families sequence is maintained during job phases, and the 

index i will denote the position of the family in the sequence during the job phase. 

While working within the i
th

 family, the rest of families (i+1, i+2,…, F) are empty 

that is there is no complete schedule until the end of the heuristic. This approach does 

not apply to Phases 3 and 4 in CDS-M-1 and CDS-M-3, in which there are complete 

schedules at the beginning of them.   
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3.2.4 NEH-M 

 

 This is the original NEH [15] employing Rajendran’s modification in the 

scheduling indices. In Phase 2 of NEH (Sec. 2.4.2.3), Step 3 becomes as follows. 

 

Step 3. Compute for each job j in family i: 

 

              
j jobfor  operations zero-non ofnumber 

P 

 = T

M

1=k

ijk

ij


 

 

 As done with CDS, in implementing NEH the families in Phase 1 are treated 

as jobs, by computing the processing time for each family i on each machine k as 


in

1j=

ikijkik S + P  =P . In phase 2, index i denotes the position of the family in the 

sequence. During job phase, in sequencing within family i, the rest of families (i+1, 

i+2,…, F) are empty. 

 

 

3.3 THE ITERATIVE IMPROVEMENT TECHNIQUES 

 

 Three new versions of SA and two of TS are proposed. Two initial solutions 

will be used for each method; a random initial solution and a relatively good initial 

solution generated by the original Hitomi’s heuristic. Heuristics are listed in next 

subsections with respect to total flow time and for the case of using a random initial 

solution, 

 

The GP parameter in SA method controls the amount of search efforts given to 

each scheduling phase. Its value of 0.1 in [15] leads to spending 10% of efforts to the 

family phase and 90% to the job phase. Alison [19] stated that the family phase in GS 



 

 

57 

is more worthy. To investigate this, GP will be given values of 0.1, 0.3, 0.5, 0.7, and 

0.9. This is used for all the SA versions. 

 

3.3.1 SA-M-1 

 

 In this version, slight modifications in Steps 6 and 7 in the original SA are 

suggested hoping to increase the efficiency of the search process. The idea is to 

prevent reversing (cancellation) of the last performed perturbation during the current 

perturbation operation, hence to avoid wasting efforts and time. 

 

A sample execution of the original SA showed that out of 1250 search 

operations (50 searches per iteration for 25 iterations), 125 families perturbations and 

1125 jobs perturbations are performed (GP = 0.1). Of the 125 trials on families, an 

average of 63 (51%), random numbers were repeated successively in Step 6. Assume 

a trial families sequence as 1,4,5,3,2. If in Step 6, 1 is 3 then the sequence is 

perturbed to be 1,4,3,5,2. If in the succeeding search, 1 is 3 again, then the third and 

fourth families are interchanged and the sequence will be back to 1,4,5,3,2. Hence the 

first perturbation operation was reversed and wasted. That is nearly 25% of the 

perturbation operations in Step 6 were canceled. Similarly, about 7% of job 

perturbations are wasted.  

 

The significance of the suggested modification is to avoid wasting efforts and 

iterations and hence to enlarge the search area. In the family phase, as before, about 

25% enlargement is possible. In other words about 25% more chance to find the best 

schedule is made available. Main parts in Steps 6 and 7 in the original SA heuristic 

(Sec.2.4.3.1) are modified to become as follows: 

 

Step 6.  In carrying out this step the order of jobs within each family will not 

change. Generate a random number 1 (1  1  F).  

If 1 = last 1 and the previous perturbation was a families 
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interchange, then go back to . Else  If 1 = last 1 and the 

previous perturbation was a jobs interchange, and no change in the 

current sequence has occurred in that perturbation, then go back to 

. Else  proceed as the original Step 6 in SA. 

Step 7.  In carrying out this step the sequence of part families stays the same. 

Generate a random number 3 (1  3  N).  

If  3 = last 3  and the previous perturbation was a jobs 

interchange, then go back to   Else  If 3 = last 3 and the 

previous perturbation was a families interchange, and no change in 

the current sequence has occurred in that perturbation, then go back 

to . Else  proceed as the original Step 7 in SA. 

 

3.3.2 SA-M-2 

  

In this version of SA, a change dependent acceptance probability is 

employed. The standard acceptance probability for the SA approach as reported in 

[33] (See Sec. 2.4.3.1) is used. This form is closer to the generic SA than the SA 

heuristic proposed in [15]. Accordingly, the parameter X will be the maximum 

temperature, which is to be reduced by a temperature reduction factor r at each step. 

The value for r is 0.9. Freezing temperature is 1.62 so that using X = 25 and r = 0.9, 

there will be 25 temperature steps corresponding to the 25 iterations in the original 

SA. 

 

The acceptance probability will be calculated at each temperature step. The 

remaining variables including the initial value of the acceptance probability will take 

the same values as in the original SA. SA-M-2 is described as follows. 

 

Step 1. Set X, Y, AP, and GP. Let r = 0.9. 

Step 2. Generate a random initial schedule. This includes a complete sequence 

for all jobs (

), a family sequence ( ) and a sequence for jobs within 
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each part family (f); where f = 1, 2 , ... , F. Let this be the current 

solution with a total flow time Flow

. Let 

*
 represent the incumbent 

solution with total flow time Flow
* 
, and set 

*
 = 


 and Flow

*
 = 

Flow

. 

Step 3. Let X = rX. If X  1.62 then stop, else set y = 0 and continue. 

Step 4. Set y = y + 1. If y  Y then go to Step 3, else go to Step 5. 

Step 5. Generate a random number  (0    1).  

If   GP, then go to Step 7, else go to Step 6 

Step 6. In carrying out this step, the sequence of jobs within each family will 

not change.  Generate a random number 1 (1  1  F). Interchange 

the family in position 1 with that in position 1+1 (if 1 = F, then 

interchange the family in position F with that in position 1) and generate 

a family sequence 
1
. Based on 

1
 specify a new complete job sequence 


1
 and calculate its total flow time Flow

1
. 

 (a) If Flow
1
 > Flow

*
 then go to (b)  

Else let 
*
 =  

1
 , set Flow

*
 = Flow

1
 and go to (b). 

 (b) If Flow
1
 > Flow


 then let  = Flow

1
 - Flow


, calculate the 

acceptance probability APx = EXP( -  / X )  and go to (c). Else 

let  = 
1
 and 


  

1
 in the current solution, and set  Flow


  =  

Flow
1
 and go to Step 4. 

 (c) Generate a random number 2 (0  2  1). If 2  AP
x
then  

go to Step 4, else let 

 =  

1
 ,  =  

1
 in the current solution,  

set Flow

 = Flow

1
 and go to step 4. 

Step 7. In carrying out this step, the sequence of families is not changed. 

Generate a random number 3(1  3  N), where N is the total number 

of jobs. Let f1 be the family in which job 3 is included. Interchange job 

in position 3 with that in position 1+1 (if  3 is the last in the family 

f1, interchange job in positions 3 with that in 
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 Position 1 family f1) in 

. Let the new sequence be 

1
f1

 for family f1 

and the new complete sequence be 
1
 with total flow time Flow

1
. 

 (a) If Flow
1
  Flow

*
 then go to (b), else let 

*
 = 

1
 in the incumbent 

solution, set Flow
*
 = Flow

1
 and go to (b). 

 (b) If Flow
1
  Flow


 then let  = Flow

1
 – Flow


 , and calculate the 

acceptance probability APx = EXP( -  / X ) and go to (c).  

Else let f1
 = 

1
f1

 ,

  

1
 in the current solution, and set Flow


 

= Flow
1
 and go to Step 4. 

 (c) Generate a random number 2 (0  2  1). If 2    AP
x
 then go 

to Step 4, else let f1
 =  

1
f1

 and 

  

1
 in the current solution, 

and set Flow

 = Flow

1
 and go to Step 4. 

 

3.3.3 SA-M-3 

 

 In this version, the control made on the behaviour of the random numbers in 

SA-M-1 is added to SA-M-2. Main parts of Steps 6 and 7 in SA-M-2 are modified 

similar to Steps 6 and 7 in SA-M-1. 

 

3.3.4 TS-M-1 

 

 In this version, when generating the new restart schedule, the current jobs 

sequences within families are kept instead of being randomly regenerated. The 

concept is to make use of the search efforts in the job phase. LTM is used for the 

same purpose in the family phase. Step 2 in the original TS (Sec2.4.2.2) is modified 

to be as follows. 

  

Step 2. If LTM = 0  then generate a random families sequence,  

Else generate a families sequence using LTM_MAX and keep the 

current jobs sequence within each family.  
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Let this be the current solution 

 with a total flow times Flow


.  

Let 
*
 represent the incumbent solution with total flow time Flow

*
.   

Set 
*
 = 


, Flow

*
 = Flow


 and LTM = LTM + 1. 

 

3.3.5 TS-M-2 

 

 In this version, LTMs for jobs within each family are developed and used to 

generate new restart jobs sequences within families based on these LTMs as made in 

the family phase. Actually, the original TS is completed rather than being modified.  

 

For jobs in each family i ( i = 1,2 …, F) a LTM termed LTMi. LTMi  is a 

frequency matrix of the size ni x ni  will contain information about the number of 

times a job occupied a certain position in the trial solutions. Step 2 in the original TS 

will be as follows below. Proposed LTMs will be used based on the maximal 

frequenceies as made with the families LTM. 

 

Step 2. If LTM = 0, generate a random families sequence,  Else generate a 

families sequence using LTM_MAX, and for each family, generate 

a jobs sequence using LTM_MAXi .Let this be a current solution 

 

with a total flow times Flow

. Let 

*
 represent the incumbent 

solution with total flow time Flow
*
. Set 

*
 = 


 , Flow

*
 = Flow


 . 

Set LTM = LTM + 1 and LTMi = LTMi +1 for all i. 

 

 

3.4 PROPOSED TIMETABLING PROCEDURE 

 

 For the case of a cell dedicated for processing of a number of part-families, 

the following timetabling procedure is proposed. It can compensate for the presence 

of the zero processing times. A formulation of the procedure disregarding the zero 

times is first presented, then the procedure with the consideration of the zero times is 
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presented. For both formulations let Starti,j,k be the start time for job j in family i on 

machine k, and Setstarti,k the family setup time start for family i on machine k.  

3.4.1 Proposed Timetabling Procedure Disregarding the Zero Times 

 

1st. For i = 1, 2,..., F , For j = 1,  For k = 1, 2,..., M 

 







ki,k,n1,-ik,n1,-i

1-ki,1,1-ki,1,

ki,1,
S + P + Start 

P + Start 
max  = Start

1-i1-i

 

 

ki,kj,i,ki, S - Start Setstart   

 

For j = 2,3,…,ni  , For k = 1,…,M 

 

Start  =  max 
 Start  +  P

 Start  +  P  i, j,k

i, j-1,k i, j-1,k

i, j k-1 i, j k-1, ,







 

 

Setstarti,k = Starti,jjjj,k – Si,k 

 

Makespan = M,nF,M,nF, FF
P + Start  

 

  Total Flow Time =  
F

=1i

n

=1j

Mj,i,

i

Finish   

 

3.4.2 Proposed Timetabling Procedure Considering the Zero Times 

 

2nd. For i = 1, 2,..., F , For j = 1, For k = 1, 2, ... , M 

 

















Otherwise                                                        0

0 > P   If       
Z S + P + Start

P + Start
max  

 = Start
k i,1,

1ki,k,jjii,k,jjii,

kki,1,kki,1,

ki,1,  

Where :  kk Last machine that job 1 in family i (Ji,1) was processed on. 
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  jj The job preceeds job Ji,1 on machine k. 

  ii Family containing job jj. 

  Z1 Binary variable such that =       
0 =  P   If      0

    0 > P  If       1

ki,1,

k i,1,





 

 

For j = 2,3,…,ni   , For k = 1,…,M 

 


















Otherwise                                                                 0

0P If
 Z S + P + Start

                             P + Start
max  

 = Start
ijk 

2ki,k,jjjiii,k,jjj iii,

kkkj,i,kkkj,i,

kj,i,  

 

Setstarti,k =  Starti,jjjj,k – Si,k 

 

Where : kkk Last machine job j in family i (Ji,j), visited. 

 jjj The job preceeds job Ji,j on machine k. 

  iii Family containing job jjj. 

 jjjj First job in family i having a non-zero time on machine k. 

  Z2 Binary variable such that = 
1

0

       If  iii <  i     

      otherwise 
      





 

 

Makespan  =   P + Start   max kt,v,kt,v,
M1,2,...,=k

 

Total Flow Time =   
F

1=i

n

1j=

lkj,i,

i

Finish   

 

Where : t Last job processed on machine k 

  v Family containing job t 

  lk Last machine in the cell that job Jij was processed on. 

 

 

 

 

3.4.3 Consequences of Not-Considering the Zero Times 
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 To show the effects of not taking the possibility of the zero times in 

consideration during timetabling in multi-family cells, the following GS sample 

problem is presented. A 3-families, 4-machines and 5-jobs per family GS problem is 

solved twice employing the proposed timetabling procedure in its two formulations as 

given in Secs. 3.4.1 and 3.4.2 respectively. Data for the problem (shown in Table 3.1) 

is generated as explained in next section, such that 20% of jobs need no processing 

on some machines (zero processing times).  

 

Table 3.1 Basic data for the 3-family, 4-machines, and 5-jobs per family, GS example 

Family Job Machine 1 Machine 2 Machine 3 Machine 4 

F1 

S1k 7 7 17 8 

J11k 4 7 0 0 

J12k 0 3 6 5 

J13k 6 4 0 5 

J14k 0 2 4 10 

J15k 0 5 6 6 

F2 

S2k 3 12 2 11 

J21k 5 4 10 0 

J22k 7 0 10 1 

J23k 9 9 0 5 

J24k 0 9 0 0 

J25k 5 9 0 8 

F3 

S3k 6 15 9 16 

J31k 2 0 9 3 

J32k 4 9 10 1 

J33k 3 3 6 10 

J34k 0 6 4 0 

J35k 4 3 0 1 

 

 A feasible schedule for this GS problem is generated by the original Hitomi’s 

heuristic method as F1( J14, J12, J15, J13, J11 ), F3 ( J31, J33, J32, J34, J35 ), F2 ( J22, J21, J25, 

J23 J24 ). The time tables for the schedule is shown in Table 3.2 for disregarding the 

zero processing times, and in Table 3.3 when considering the zero processing times 

in the calculations. Gantt charts for the two cases are shown in Fig.3.1. 

 

The shaded cells in Table 3.3 contain the start and finish times that are different from 

the corresponding values in Table 3.2. These differences are due to the compensation 
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for the zero times. The shaded numbers are the correct values that are obtained by 

eliminating the zero time-jobs from their locations in the schedule. Basically, the 

effect of the proposed timetabling procedure is to eliminate the  zero time-jobs. In 

Fig.3.1 the  numbers  above  the  horizontal bars indicate the locations of the zero-

jobs. These are shown in part [a]. In part [b] these jobs are eliminated. Comparing the 

two tables and the two parts [a] and [b] in Fig.3.1, the following observations are 

true. 

 

Table 3.2 Time table for the data of  Table 3.1 without considering zero times 

Family Job 
Machine 1 Machine 2 Machine 3 Machine 4 

Start Finish Start Finish Start Finish Start Finish 

F1 

S1K 0 7 0 7 0 17 13 21 

J14K 

J12K 

J15K 

J13K 

J11K 

7 

7 

7 

7 

13 

7 

7 

7 

13 

17 

7 

9 

12 

17 

21 

9 

12 

17 

21 

28 

17 

21 

27 

33 

33 

21 

27 

33 

33 

33 

21 

31 

36 

42 

47 

31 

36 

42 

47 

47 

F3 

S3K 17 23 28 43 34 43 47 63 

J31K 

J33K 

J32K 

J34K 

J35K 

23 

25 

28 

32 

32 

25 

28 

32 

32 

36 

43 

43 

46 

55 

61 

43 

46 

55 

61 

64 

43 

52 

58 

68 

72 

52 

58 

68 

72 

72 

63 

66 

76 

77 

77 

66 

76 

77 

77 

78 

F2 

S2K 36 39 64 76 74 76 78 89 

J22K 

J21K 

J25K 

J23K 

J24K 

39 

46 

51 

56 

65 

46 

51 

56 

65 

65 

76 

76 

80 

89 

98 

76 

80 

89 

98 

107 

76 

86 

96 

98 

107 

86 

96 

96 

98 

107 

89 

96 

96 

104 

109 

90 

96 

104 

109 

109 

 

1. Job J31 is reported in Table 3.2 and Fig.3.1 [a] to finish on machine 2 at time 43 

hence it can start on machine 3 only at time 43. As this job is the first in family 3 then 

setup time for the family on machine 3; S33 will start at time 34 to finish at 43. 

Machine 3 is then idle for one time unit after finishing J13 and J11 according to the 

schedule, from 33 to 34. But this job J31 does not need processing on machine 2 

(P312 = 0), thus this finishing time of 43 for J31 is meaningless. Hence J31 does not 

have to wait until 43 to start on machine 3. Instead, J31 can be removed from the 

schedule at this location and hence it can be shifted to start at 42 on machine 3 while 

S33 will start at 33 to finish at 42, as shown in Table 3.3 and in Fig.3.1 [b]. 
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2. Job J22 starts on machine 3 at time 76 after being finished on machine 2 at time 

76, to finish at 86  as  reported in Table 3.2 and Fig.3.1 [a]. But P222 = 0. Hence J22 

can start on machine 3 once the machine is free that happens at time 73. Then the job 

is finished at time 83 not at time 86, which is shown in Table 3.3 and Fig.3.1 [b]. Idle 

time on machine 3 before this job is removed as well. 

 

Table 3.3 Time table for the data of Table 3.1 considering zero processing times 

Family Job 
Machine 1 Machine 2 Machine 3 Machine 4 

Start Finish Start Finish Start Finish Start Finish 

F1 

S1K 0 7 0 7 0 17 13 21 

J14K 

J12K 

J15K 

J13K 

J11K 

0 0 7 9 17 21 21 31 

0 0 9 12 21 27 31 36 

0 0 12 17 27 33 36 42 

7 13 17 21 0 0 42 47 

13 17 21 28 0 0 0 0 

F3 

S3K 17 23 28 43 33 42 47 63 

J31K 

J33K 

J32K 

J34K 

J35K 

23 25 0 0 42 51 63 66 

25 28 43 46 51 57 66 76 

28 32 46 55 57 67 76 77 

0 0 55 61 67 71 0 0 

32 36 61 64 0 0 77 78 

F2 

S2K 36 39 64 76 71 73 78 89 

J22K 

J21K 

J25K 

J23K 

J24K 

39 46 0 0 73 83 89 90 

46 51 76 80 83 93 0 0 

51 56 80 89 0 0 90 98 

56 65 89 98 0 0 98 103 

0 0 98 107 0 0 0 0 

 

3. Job J25 starts on machine 4 at 96 and finishes at 104. This is because it is to be 

finished on machine 3 at 96 as shown in Table 3.2 and Fig.3.1 [a], although it is not 

processed on that machine. It is clear that J25 and also J23 can be started on machine 

4 at 90 and 98 respectively. This is shown in Table 3.2 and Fig.3.1 [a]. In addition, 

machine 4 is released at 103 instead of 109 hence freeing more idle time. 

 

 



 

 

67 
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4. Machine 3 is reported in Table 3.2 and Fig.3.1 [a] to be busy with J24 until time 

107 which is not true since P243 = 0. The same can be said for J233 that needs no 

processing on machine 4 although that machine is falsely reported in Table 3.2 to be 

engaged with J233 until time 98.  

 

5. Makespan in Fig.3.1 [a] is the finish time of J24 (109) on machine 4. In Fig.3.1 [b] 

makespan is the finish time of J24 (107) on machine 2. The total flow time when 

disregarding the zero times is calculated as 1085. When considering the zero times 

and making these corrections to jobs start and completion times, it is corrected to be 

1043. 

 

Consequently, it can be said that neglecting the possibility of the zero 

times in multi-family manufacturing cells will result in erroneous jobs 

completion times, false and overestimated values for makespan and total flow 

time, and misleading information about machine utilization and availability. 

The correct information is obtained when taking the zero processing times in 

account during the timetabling calculations. Start and finish times for the zero-

times jobs should be set to zero so as not to affect the start times of the 

following jobs in the schedule. Besides, machine idle times can be reduced as 

well. 

 

Another consequence of using the proposed modified time tabling 

procedure is that makespan is found to occur on any machine not necessarily 

on the last machine and not necessarily with the last job in the schedule. 

Makespan when zero processing times exist, is not always correct to be 

defined as the time span from the start of the first job on the first machine to 

the completion of the last job on the last machine [3,17]. Instead it is sufficient 

to be defined as the largest completion time. Given that the start and 
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completion times for the zero time jobs are set to zero, then makespan can be 

defined mathematically as in Sec.2.1.4. 

 

The consequences of not taking the zero processing times in 

consideration are true regardless of the level of performance of the scheduling 

methodology employed. Solving the same sample 3x4x5 problem using the 

proposed TS-M-1 for both the total flow time and makespan objectives, the 

same observations were found true. The corrections to total flow time and 

makespan are found as shown in Table 3.4.  

 

Table 3.4 Corrections made to total flow time and makespan by the  

Proposed timetabling procedure considering the zero times in a 3x4x5 problem 

Method 
Disregarding 

The zero times 

Considering 

the zero times 

Change 

(%) 

Hitomi   

Total flow time 1085 1043 3.87 

Makespan 109 107 1.35 

TS-M-1  for total flow time   

Total flow time 1049 1010 3.72 

Makespan 109 107 1.35 

TS-M-1  for makespan   

Total flow time 1051 1024 2.57 

Makespan 101 107 0 

 

 For a larger size problem (5x5x5), the same observations are true as well. For 

the same heuristics shown in Table 3.4, the corrections to makespan and total flow 

time are found as shown in Table 3.5.  

 

Table 3.5 Corrections made to total flow time and makespan by the  

Proposed timetabling procedure considering the zero times in 5x5x5 problem 

Method 
Disregarding 

the zero times 

Considering 

the zero times 

Change 

(%) 

Hitomi   

Total flow time 2876 2605 9.42 

Makespan 195 194 0.51 
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TS-M-1  for total flow time   

Total flow time 2649 2301 13.14 

Makespan 195 193 1.03 

TS-M-1  for makespan   

Total flow time 2772 2389 13.82 

Makespan 186 181 2.69 

 

3.5 COMPARISON OF THE GROUP SCHEDULING HEURISTICS 

 

 For Carrying out the comparison among the described GS heuristics, GS 

problems of various sizes are randomly generated. Data configuration is similar to 

that used in [12,15]. 30 problems for each of 8 problem sizes were generated as 

described below. Written as (F  M  ni) the generated problem sizes are (333), 

(345), (444), (654), (555), (666), (568), and (888). 

 

Processing times for jobs are integer random variables uniformly distributed in 

U(1, 10). Most researchers have used this distribution in their experimentation [30]. 

To generate the zero processing times a uniform random number is sampled, if it is 

less than or equal to 0.2 a zero processing time is used. Hence 20% of job processing 

times in the cell are set to zero. This percentage is used in [17,18,30]. Nevertheless, a 

family can not be empty. 

 

 For each problem size the family setup times are integer random variables 

uniformly distributed in the following three sets: U(1,20), U(1,50) and U(1,100) so 

that to study the impact of the different values for the family setup time to job 

processing time ratios; S/R of 2, 5 and 10 respectively.  

 

To compare the relative performance of the heuristics, a measure of 

performance is established as follows. The total flow time and makespan obtained by 

the original Hitomi’s heuristic for each S/R ratio are standardized to be 100%. Then 

the average total flow time or the average makespan for the other heuristics are 

related to that of Hitomi. For instance, let FHitmoi and FX represent the average total 
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flow times obtained by Hitomi and the X heuristic, respectively, then the relative total 

flow time for X is denoted by RELFx (relative makespan is RELMX ) and is given by: 

100
F

F
RELF

1-Hitomi

X
X 










  

 

Hence, a value below 100 will indicate that X outperforms Hitomi and is 

preferred to it. And generally lower values are for better performance. In addition, for 

each scheduling criterion the other criterion is recorded as a side result for the 

comparison. The computational times in seconds are recorded as well. Results of the 

comparison are discussed in Chapter 4. 
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CHAPTER 4 

 

ANALYSIS AND DISCUSSION OF RESULTS  

 

In this chapter the results of the comparison of the GS heuristics described in 

Chapter 3 are analyzed and discussed.  All procedures were coded in Quick BASIC 

4.5. The computational experiments were performed on a 100 MHz Pentium IBM 

compatible personal computer. The complete set of results is tabulated in Appendix 

A for total flow time and Appendix B for makespan. 

 

For convenience, the iterative improvement methods in this chapter and in the 

tables of results will be sometimes referred to as explained in Appendix A. 

 

4.1 RESULTS WITH RESPECT TO TOTAL FLOW TIME 

 

4.1.1 The Single and Multi-Pass Methods  

 

 Basically the modifications to the simple (single and multi-pass) methods are 

concerned with testing Rajendran’s modification (Sec. 2.4.4) [18,30]. As shown in 

Fig.4.1, Rajendran’s modification is generally ineffective for all the simple methods. 

This is shown in Fig.4.1 for the 5x5x5 problem size as an example. It can be found 

from the tables in Appendix A that this is true for all problem sizes. 

 

It is shown in Fig. 4.1 also that the proposed CDS-M-2 is the best CDS 

version. This is the result of its iterative behaviour that can handle the scheduling 

phases’ interaction. But this is limited by the finite number of solutions generated by 

CDS and is incurring longer CPU times. For example, for the largest problem at S/R 

= 10, the original CDS takes 2.95 sec while CDS-M-2 takes 6.84 sec. This 
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Effect of Rajendran's modification for 5x5x5 at S/R = 2
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Effect of Rajendran's modification for 5x5x5 at S/R = 5
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Effect of Rajendran's modification for 5x5x5 at S/R = 10
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Fig.4.1 The effect of Rajendran's modification on the simple heuristics 

Without Rajendran                      With Rajendran 
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result indicates the importance of taking phases’ interaction in consideration. It is 

thus logical to consider the development and use of the iterative improvement 

techniques for the GS problems.  

 

Fig.4.1 also shows that NEH is the best performing among all the simple 

methods, while Hitomi shows the least performance. This is true for all problem sizes 

and all S/R values. 

 

Comparing Figs.4.2 and 4.3, it can be observed that NEH is better than CDS-

M-2 for all conditions. As problem size increases, the performance of  NEH 

 

Fig.4.2 Level of performance of the original NEH – Total flow time 

Fig.4.3 Level of performance of CDS-M-2 – Total flow time 

Relative performance of the original NEH
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fluctuates about a horizontal trend while CDS-M-2 slightly improves. NEH performs 

better at the smaller S/R values than at the higher S/R. Noting that the scheduling 

index in NEH is the summation of the processing times for each job on all machines, 

then at the higher S/R such scheduling index may loose its significance due to the 

large setup times relative to the processing times. On the other hand there is no clear 

trend for the effect of varying S/R on CDS-M-2. 

 

The associated makespan with minimizing total flow time (AMF) from NEH 

is the worst compared with the other methods. This is clear in Appendix A. CDS-M-2 

generates relatively improved AMF as a side result to minimizing makespan. AMF 

from both methods improves as problem size increases.  

 

Regarding the CPU time records in Appendix A, it is observed that CPU time 

for NEH is longer than CDS-M-2, ranging from 0.04 for the smallest problem up to 

about 9.45 sec for the largest problem. For CDS-M-2 the CPU time ranges from 

0.046 up to 6.84 sec. 

 

4.1.2 The Iterative Improvement Techniques 

 

4.1.2.1 The tabu search heuristics 

 

Studying the results of the comparison of the TS methods; Fig. 4.4, it can be 

found that the proposed TS-M-1 is superior to the other TS versions. It outperforms 

them in most of the cases. At S/R = 10 and using a random initial solution, TS-M-1 is 

the best all the time. At the higher S/R the performance of all versions is relatively 

better and more robust to increasing the problem size.  

 

Counting the number of times in which a TS version is better than the other 

versions, Table 4.1 is formulated. From the table, it is observed that using a random 

initial solution TS-M-1 generates the best results for the largest number of times. The 

original TS  ranks the second and then  TS-M-2. S/R does not seem  
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Table 4.1 Statistics of the performance of the TS heuristics – Total flow time 

 3rd. Using a Random Initial Solution 

 TS TS-M-1 TS-M-2 

S/R First Second Third First Second Third First Second Third 

2 3 1 4 2 4 2 3 3 2 

5 3 4 1 4 3 1 1 1 6 

10 - 4 4 8 - - - 4 4 

Sum 6 9 9 14 7 3 3 7 14 

 4th. Using a Hitomi Initial Solution 

 TS TS-M-1 TS-M-2 

S/R First Second Third First Second Third First Second Third 

2 2 - 6 6 1 1 - 7 1 

5 2 1 5 6 2 - - 5 3 

10 2 1 5 6 2 - - 5 3 

Sum 6 2 16 18 5 1 - 17 7 

 

to affect their ranks. When using Hitomi as an initial solution, TS-M-1 is still the 

best, even better than with the random initial solution. TS-M-2 is never in the first 

position, however it comes the second for the largest number of times (17 out of 24). 

Observing that TS-M-1 is third for one time only, then TS-M-2 is better than original 

TS for 66.67% of the cases using Hitomi’s initial solution. 

 

Fig.4.5 shows the effect of using Hitomi as an initial solution on TS. Largest 

differences are observed for TS-M-2, while the least effect is seen for the original 

TS. Since TS-M-2 could outperform the original TS when Hitomi is used, then it is 

the use of the complete LTM in TS-M-2 that made it possible for such a relatively 

good initial solution to release more potentials from the TS procedure.  

 

It is thus concluded that the LTM should be used completely in the two 

scheduling phases of GS. However, using a partial LTM in the family phase with a 

simple straight way to make use of the search efforts in the job phase (TS-M-1) 
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Comparson of the TS methods at S/R = 2 - Random initial solution
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Comparson of the TS methods at S/R = 5 - Random initial solution
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Comparson of the TS methods at S/R = 10 - Random initial solution
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Fig. 4.4 Performance of the TS methods using random initial solution - Total flow time 
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TS using random and Hitomi initial solutions at S/R = 2
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TS-M-1 using random and Hitomi initial solutions at S/R = 2
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TS-M-2 using random and Hitomi initial solutions at S/R = 2
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Fig.4.5 The effect of using Hitomi initial solution on TS methods at S/R = 2 - Total flow time 
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is found better than the complete LTM in TS-M-2. Hence, the complete LTM is 

needed but LTM is not properly defined for the TS heuristic as proposed in [12]. That 

is considering only the number of times a family comes in some position in the trial 

solutions during the iterations is not the enough information to operate LTM. More 

search-based information may be concerning phases’ interaction, deserve to be 

considered. 

 

It is the nature of the GS problem that the reason why LTM as in [12] does not 

work as expected. For example, a family (or a job) may come in a position “ t “ for 

the largest number of times during the iterations. Then in generating the new initial 

solution, this family (job) will be placed in position “ t “. Let another family ( job) 

come in another position “ v “ a number of times such that it will be in this position 

in the new initial solution. It is possible that placing the first family (job) in position “ 

t “ and the second one in position “ v “, will be a situation that prevent reaching a 

good complete schedule. Perhaps the number of times that the first family (job) was 

in position “ t “ did not coincide with the times in which the other one was in position 

“ v “.  In other words getting a good schedule with the first family in position “ t “ is 

conditioned by that the other family is not in position “ v “ or vise versa.  

 

This is similar to the possible situation in using the multi-pass methods when 

switching from family phase to job phase for example. A family schedule may be a 

constraint during the job phase that will prevent reaching some better possible 

schedules. Thus even for the iterative improvement methods phases’ interaction has 

to be considered in the structure of the algorithm. 

 

The effect of increasing S/R is positive in general for the TS methods. From 

Fig.4.4 it is observed that for the higher S/R, the method is more robust and able to 

keep its level of performance for the larger problems. The three versions behave 

similar to each other.  An average of about 1.5% improvement in makespan (AMF) is 

achieved by the TS methods. A maximum of about 3.4% is observed at 8x8x8 
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problems for TS-M-1. AMF is better for the larger problems as shown in Fig. 4.5 and 

this is true for all S/R values. 

 

4.1.2.2 The simulated annealing heuristics 

 

From Fig.4.6 it is observed that SA-M-2 and SA-M-3 are better than the 

original SA and SA-M-1. This is true for all conditions. This shows that the change-

dependent acceptance probability improved the performance of SA. A change 

dependent acceptance probability can avoid solutions that results in drastic changes 

in the objective function value. If a non-improving solution is reached during 

iteration step X with a large value of  , then the value of the acceptance probability 

APx = EXP( -  / X )  would be low due to the negative sign. Hence the procedure is 

forced toward asymptotic convergence.  

 

It was found also that SA-M-1 is better than the original SA for about 58.25% 

of times. Similarly SA-M-3 is better than SA-M-2 for about 61.25% of times. Thus 

the control on the behaviour of the random numbers in SA-M-1 and SA-M-3 could 

lead to better performance. Consequently SA-M-3 is preferable to the original SA 

and the other SA versions. 

 

The performance of SA methods generally tends to deteriorate as the problem 

size increases. SA is dependent to a large extent on the use of the random numbers 

and as problem size increases this is a disadvantage leading to the inferior 

performance. Meanwhile, using Hitomi as an initial solution made no important 

differences. 

 

Varying the GP value affects as follows. For the original SA and SA-M-1, GP 

of 0.7 and 0.9 result in the best performance in most cases, while 0.5 gives fairly 

good results. This is shown in Fig.4.7.  For SA-M-2 and SA-M-3, GP of 0.5 and 0.7 

are the best most often. This is shown in Fig.4.8. Thus it is stated that spending the 

majority of the search effort to the family phase is more worthy. 
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Relative performance of the SA methods for GP = 0.7 at S/R = 2
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Relative performance of the SA methods for GP = 0.7 at S/R = 5
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Relative performance of the SA methods for GP = 0.7 at S/R = 10
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Fig.4.6 Performance of the SA methods using random initial solution, GP = 0.7- Total flow time 
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Performanc of SA-M-1 at S/R = 2
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Performanc of SA-M-1 at S/R = 5
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Performanc of SA-M-1 at S/R = 10
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Fig.4.7 Performance of the SA-M-1for different GP values - Total flow time 
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Performance of SA-M-3 at S/R = 2
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Performance of SA-M-3 at S/R = 2
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Performance of SA-M-3 at S/R = 2
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Fig.4.8 Performance of the SA-M-3 for different GP values - Total flow time 
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AMF of SA methods for GP = 0.7at S/R = 2
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AMF of SA methods for GP = 0.7at S/R = 5
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AMF of SA methods for GP = 0.7at S/R = 10
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Fig.4.9 AMF from the SA methods for GP of 0.7 - Total flow time 



 

 

86 

From Figs. 4.7 and 4.8, it is observed that the differences among the various 

GP values are larger for SA-M-1 (and similarly for original SA) than for SA-M-3 

(and SA-M-2). Increasing S/R also reduces the effect of GP. Thus it can be 

concluded that as the performance of the heuristic improves the effect of GP 

decreases. It is expected that if the performance is improved more, the two 

scheduling phases would be equally important. This is reminding with that obtaining 

the optimal solution by the branch and bound is characterized by the simultaneous 

determination of the schedules in the two phases. 

 

The SA methods could improve makespan as a side-result for minimizing total 

flow time (AMF). A maximum improvement of about 3.9% is observed for SA-M-3. 

The average improvement is about 1.72%. This is shown in Fig.4.9 for SA-M-3. 

AMF is better from both SA-M-3 and SA-M-2 than from SA-M-1 or SA. In Fig.4.9 it 

is shown that unlike total flow time, AMF improves at the larger S/R and larger 

problems and this is true for the other SA versions. 

 

4.1.3 Comparison of Best Heuristics for Total Flow Time 

 

 It is expected that the iterative methods are superior to the simple methods. 

This can be observed in Fig.4.10. In general the SA-M-3 at GP = 0.7 (SA-M-3.7) 

ranks first, TS-M-1 second, NEH third and CDS-M-2 is last. NEH is comparable in 

some cases to the two the iterative methods at the smaller S/R values. TS-M-1 

outperforms SA-M-3.7 for the largest problem for all S/R. It is noted that SA-M-3.7 

tends to deteriorate at larger problems while TS-M-1 is more stable. 

 

In Fig.4.11 it is shown that AMF from NEH is the worst. CDS-M-2 is best for 

the smaller S/R. At the higher S/R CDS-M-2 is comparable and generally preferable 

to the iterative methods. SA-M-3 is better than TS-M-1 in most cases, But TS-M-1 is 

better than SA-M-3.7 at the largest problem. 
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Comparison of best heuristics at S/R = 2
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Comparison of best heuristics at S/R = 5 
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Comparison of best heuristics at S/R = 10 
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Fig.4.10 Comparison of the best heuristics - Total flow time 

 

 



 

 

88 

AMF of best heuristics at S/R = 2
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AMF  of best heuristics at S/R = 5 
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AMF of best heuristics at S/R = 10
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Fig.4.11  AMF from the best heuristics - Total flow time 
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The CPU time for the TS-M-1 is the longest, ranging from 2.984 sec up to 

1773.78 sec, while for SA-M-3.7 it ranges from 4.357 sec up to 75.821sec. 

Meanwhile the longest CPU time for CDS-M-2 is 6.84 sec and for NEH 9.45 sec. 

 

4.2 RESULTS WITH RESPECT TO MAKESPAN 

 

4.2.1 The Single and Multi-Pass Methods 

 

Regarding the adoption of Rajendarn’s modification in the simple methods, it 

is shown in Fig. 4.12 that Rajendran’s modification is generally ineffective for 

minimizing makespan. This is true for all problem sizes as can be found from the 

tables of results in Appendix B. 

 

The proposed iterative CDS-M-2 is the best performing CDS version, as 

shown in Fig. 4.12. This is true for all problem sizes. This is the result of its iterative 

behaviour that makes it able to handle the constraining effect of the phases’ 

interaction. The superiority of it is limited by the finite number of solutions 

enumerated by the CDS technique and is at the expense of the CPU time as was the 

case of minimizing total flow time. This result emphasizes the consideration of the 

phases’ interaction, which in turn gives more significance to developing and using 

the iterative improvement techniques. 

 

Unlike the case of minimizing total flow time, NEH is not always the best 

simple method. In fact CDS-M-2 outperforms NEH more frequent. This is shown in 

Fig. 4.13. In Fig.4.14 it is noticed that NEH shows lower performance at the higher 

S/R. This was also observed in Sec. 4.1.1 indicating that the scheduling index in 

NEH is less significant at the higher S/R ratios. Meanwhile, there is no clear trend for 

the effect of S/R on CDS-M-2 as in Fig. 4.15.  From Figs. 4.14 and 4.15, it is 

observed that both NEH and CDS-M-2 slightly improves as the problem size 

increases which is clearer for CDS-M-2.  
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Effect of Rajendran's modification for 5x5x5 at S/R = 2
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Effect of Rajendran's modification for 5x5x5 at S/R = 5
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Effect of Rajendran's modification for 5x5x5 at S/R = 10
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Fig.4.12 The effect of Rajendran's modification on the simple methods - Makespan 

Without Rajendran                      With Rajendran 
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CDS-M-2 vs. NEH at S/R = 2 
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CDS-M-2 vs. NEH at S/R = 5 
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CDS-M-2 vs. NEH at S/R = 10
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Fig.4.13 Comparison of CDS-M-2 and NEH - Makespan 
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 NEH generates good AFM while minimizing makespan. As in Fig. 4.14 the 

AFM is improved over the reference value of Hitomi more than the improvement in 

makespan although makespan is the main objective. This is true for all conditions. 

For AFM a maximum of 5.73% improvement is achieved at 5x6x8 problems, and a 

minimum of 3.43% is achieved at 3x3x3 problems. For the main objective of 

makespan a maximum of 4.72% improvement is achieved at 8x8x8, and minimum of 

1.21% at 3x3x3. Overall average improvement in AFM is 4.43%, and for makespan it 

is 3.1%. Meanwhile CDS-M-2 makes an average of 2% improvement.  

 

Fig. 4.14 Level of performance of original NEH – Makespan 

 

Fig. 4.15 Level of performance of  the CDS-M-2 – Makespan 
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4.2.2 The Iterative Improvement Techniques 

 

4.2.2.1 The tabu search heuristics 

 

Studying the results of the TS methods and Fig. 4.16 it is observed that TS-M-

1is best performing in most cases. The performance of the TS methods tends to 

improve as the problem size increases. Increasing S/R ratio accelerates the 

improvement rate of the TS heuristics as problem size increases. 

 

Table 4.2 shows the number of times in which a TS version is better than the 

other versions. It is noticed that TS-M-1 is the best for 66.67% of the cases when 

using random initial solution. Original TS is the second and TS-M-2 comes last. 

When using Hitomi’s initial solution, TS-M-1 is still the best, and for 83.33% of 

times. The original TS could be the best for 17.67% of times, mainly for the smaller 

problems and with negligible differences between it and the other two versions. 

However, comparing TS and TS-M-2, it can be found that TS-M-2 outperforms the 

original TS when using Hitomi’s initial solution for more than 70% of times. Similar 

to the case of minimizing total flow time, the complete LTM in TS-M-2 is that made 

it possible to improve its performance by the use of Hitomi’ s initial solution. 

 

In Fig.4.17, it is shown that using Hitomi improved performance of the 

TS methods. Largest effect is seen for TS-M-2, while the least is seen for the 

original TS.  Hence, the same conclusion derived in Sec.4.1.2.1 about the use of 

LTM and the information it should contain is applicable for optimizing makespan.  

 

 AFM from the TS methods is well improved over the reference value. It is 

better as problem size increases for both the random and Hitomi’s initial solutions. It 

can be observed in Fig.4.17 that TS-M-1 is also the best performing for the AFM. A 

maximum improvement of 5.83% is observed for TS-M-1 at 6x5x4 and a minimum 

of 1.05% at 3x3x3. Average improvement is 2.41%. 
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Relative performance of the TS methods at S/R = 2
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Relative performance of the TS methods at S/R = 5
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Relative performance of the TS methods at S/R = 10
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Fig.4.16 Performance of the TS methods using random initial solution - Makespan 
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TS with random and Hitomi initial solution at S/R = 2 
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TS-M-2 using random and Hitomi initial solutions at S/R = 5
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TS-M-2 using random and Hitomi initial solutions at S/R =10
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Fig.4.17 Effect of using Hitomi initial solution on TS methods at S/R = 10 - Makespan 
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Table 4.2 Statistics of the performance of the TS versions - Makespan 

 5th. Using a Random Initial Solution 

 TS TS-M-1 TS-M-2 

S/R First Second Third First Second Third First Second Third 

2 3 2 3 5 3 - - 3 5 

5 2 4 2 6 2 - - 2 6 

10 3 5 - 6 2 - - 1 7 

Sum 8 11 5 16 7 1 0 6 18 

 6th. Using a Hitomi initial Solution 

 TS TS-M-1 TS-M-2 

S/R First Second Third First Second Third First Second Third 

2 2 - 6 6 2 - - 6 2 

5 1 1 6 7 1 - - 6 2 

10 1 2 5 7 - 1 - 6 2 

Sum 4 3 17 20 3 1 0 18 6 

 

4.2.2.2 The simulated annealing heuristics 

 

Results of the SA methods show that the change-dependent acceptance 

probability versions (SA-M-2 or SA-M-3) are better than the change independent 

acceptance probability (original SA and SA-M-1). This is shown in Fig.4.18. In 

addition, from the tables of results in Appendix B, it is possible to observe that SA-

M-1 outperforms the original SA for 75% of cases for both the random and Hitomi 

initial solutions. Similarly, SA-M-3 outperforms SA-M-2 for about 62% of cases. 

This indicates as in Sec.4.1.2.2, the necessity to add a form of control on the 

behaviour of the random numbers in the SA techniques. Consequently SA-M-3 is 

preferred to the original SA and the other SA versions. 

 

It can be also seen in Fig.4.18 that the performance of the SA methods is 

generally better at the higher S/R. However, as problem size increases the 

performance becomes inferior. Using Hitomi as an initial solution made no important 

difference. 



 

 

97 

The GP factor has less effect for makespan than for total flow time. In 

Fig.4.19 and following the values in Appendix B, it can be found that best results are 

observed for GP of 0.5 to 0.7 most often. Then comes 0.9 and 0.3 with 0.9 slightly 

preferable. That is giving the majority of the search efforts to the family phase is 

more worthy in minimizing makespan as well. 

 

It is noted that makespan is relatively simpler to optimize than total flow time, 

and hence the performance of SA is expected to be better for makespan than for total 

flow time. And as indicated in Sec.4.1.2.2, the effect of GP is less when the 

performance of the heuristic is improved. Hence, it becomes logical that GP has less 

effect here than it had with minimizing total flow time. 

 

AFM from the SA methods is improved and as for makespan, AFM is better at 

the lower S/R but it deteriorates as problem size increases. A TS-M-1 is the best for 

AFM as well. maximum improvement of 4.74% is observed for SA-M-3 at 6x5x4 

while a minimum of 1.43 is observed at 3x3x3. The average improvement is about 

3.04%. 

 

4.2.3 Comparison of Best Heuristics for Makespan 

 

 As shown in Fig.4.20, the two best iterative improvement heuristics are 

superior to the simple methods. In general SA-M-3.7 and TS-M-1 performs 

equivalently. TS-M-1 is more stable for the larger problem sizes than SA-M-3.7. 

 

Longest CPU times are observed for TS-M-1 ranging from about 4.4 sec up to 

about 1789 sec, while for SA-M-3.7 the ranges is from about 4.4 sec up to 75.8 sec. 

Meanwhile the longest CPU time for CDS-M-2 is 5.92 sec and for NEH 9.30 sec. 

 

AFM from the four heuristics in Fig.4.21 are comparable which is clearer at 

the higher S/R. In general NEH seems preferable to TS-M-1 and SA-M-3.7. 
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Relative performance of SA methods for GP = 0.7 at S/R = 10
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Relative performance of SA methods  for GP = 0.7 at S/R = 5
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     Fig.4.18 Performance of SA methods using random initial solution, GP = 0.7 - Makespan 
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Performanc of S-A-2-R for Different GP at S/R = 2
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Performance of SA-2-R for Different GP at S/R = 5
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Performance of SA-R-1 for different GP at S/R = 10
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Fig.4.19 Performance of SA-M-1 for Different GP - Makespan 
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4.3 COMPARISON OF THE BEST HEURISTIC VERSIONS 

 

Summarizing the findings in the previous sections, it can be stated that the 

proposed modifications could improve the performance of the CDS, SA, and TS 

heuristics. The best versions are CDS-M-2, SA-M-3 (GP = 0.7) and the TS-M-1 

respectively. While Rajendarn’s modification was found ineffective and the original 

NEH and Hitomi were preferred to their modifications. This is true for both 

objectives of total flow time and makespan.  

 

The original NEH is the best simple method for the total flow time, while 

CDS-M-2 is the best for makespan. AFM of NEH is better than RELM when 

optimizing makespan. In addition NEH performs well for optimizing total flow time 

associated with the worst AMF. Thus NEH seems to be more appropriate for the 

minimization of total flow time. Nevertheless, it is recommended to be used to 

minimize makespan so as to get good results with respect to the two measures of 

performance.  

 

SA-M-3 at GP = 0.7 (SA-M-3.7) is better than TS-M-1 for total flow time, 

except for the largest problems. For makespan the two methods are approximately 

equivalent but TS-M-1 used to be better at the larger problems. SA-M-3.7 may be 

preferred for total flow time at the small and medium size problems. 

 

Still TS-M-1 is found more stable than SA-M-3.7 as the problem size 

increases. It offers the possibility to redefine its components and the information 

included in them so that to improve its efficiency employing more relevant search 

based-information. Consequently TS-M-1 is considered preferable in general to SA-

M-3.7. 

 

The disadvantage of TS methods is the CPU time compared with SA methods. 

As can be found in  Appendices, CPU  time for  TS methods  increases  
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Comparison of best heuristics at S/R = 2
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Comparison of best heuristics at S/R = 5 
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Comparison of best heuristics at S/R = 10

91

92

93

94

95

96

97

98

99

100

3X3X3 3X4X5 4X4X4 6X5X4 5X5X5 6X6X6 5X6X8 8X8X8

Problem size

%
 R

E
L
M

CDS-M-2

NEH

SA-M-3

TS-M-1

 

Fig.4.20 Comparison of the best heuristics - Makespan 
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AFM of best heuristics at S/R = 2
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AFM  of best heuristics at S/R = 5 
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AFM of best heuristics at S/R = 10
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Fig.4.21  AFM with makespan from the best heuristics - Makespan 
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very rabidly compared to the SA methods. CPU time for TS-M-1 ranges from about 3 

sec up to about 1800 sec. CPU time for SA-M-3.7 ranges from about 4.3 sec up to 

75.7 sec. This is because TS uses a larger number of matrices and that the frequency 

of calculating the total flow time and makespan is higher than for the SA methods. 

For example in a 5x5x5 problem SA used the timetabling calculation 1250 times 

while TS uses the calculations 5100 times.  
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CHAPTER 5 

 

CASE STUDY 

 

 In order to investigate the applicability of the GS approach, a case study was 

conducted applying GS to a traditional batch production system that is already 

existing. 

 

The machining shop (Hunger 6) in El-Nasr for Automobile Manufacturing 

Company, Helwan-Cairo, was chosen for the study. Hunger 6 produces all the parts 

(machined parts) used in the manufacture of automobiles, buses, and trucks produced 

in the company.  

 

The shop consists of a large number of traditional cutting machines classified 

into about 105 classes. Machines include various types of lathes (center, production, 

heavy duty, turret, …), milling machines (universal, horizontal, vertical, gear milling, 

…), drills (radial, multi-spindle, special,…), and other necessary machines including 

slotters, presses, grinders, finishing machines ,… in variety of types and capabilities. 

 

 

5.1 EXISTING OPERATING SYSTEM 

 

 The planning sector develops the yearly production plan for the company. A 

typical production plan, shown in Fig.5.1, shows the production year divided into 

four quarters, 48 weeks. Models of the automobile, bus, or truck are listed vertically. 

Figures in the table are the number of units required for each model in the indicated 

week. For example; 50 trucks of Model 1 are due during weeks 41-44. According to 

the plan each sector in the company develops its internal plan. 
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Class 
Models 

1
st
 Quarter 2

nd
 Quarter 3

rd
 Quarter 4

th
 Quarter   

1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40 41-44 45-48 Total Remarks 

T
ru

ck
s 

Model 1 - - - - - - - - - 50 50 - 100  

Model 2 - 10 - 6 - - - - - 40 44 - 100  

Model 3 - - - - - - - - - 10 10 5 25  

Model 4 - - - - - - - - - 25 25 25 75  

Model 5 - - - - - - - - - 35 30 - 65  

Model 6 - 4 - - 20 4 19 - 20 6 6 5 84  

Model 7 - - - - - - - - 34 50 50 70 204  

Total - 14 - 6 20 4 19 - 54 216 215 105 635  

B
u

se
s 

Model 1 - - - 12 - - 1 - - - - - 13  

Model 2 - - - - - - - - 20 - - - 20  

Model 3 - - - - - - - - - - - 50 50  

Model 4 - - 26 4 - 10 10 10 25 - - - 85  

Model 5 10 - 3 - 11 15 17 12 20 20 10 10 129  

Model 6 - - - - - - - 1 - 40 - 59 100  

Model 7 - - - - - - - - - 10 5 35 50  

Model 4 - - - - 10 - 2 10 5 - 3 20 50  

Model 5 - - - - - - - - - 20 20 10 50  

Model 6 - - - 35 96 67 2 40 150 150 - - 540  

Model 7 - - - - - - - - - - 100 - 100  

Total 10 - 29 51 117 92 32 74 220 240 138 184 1187  

 Model 1 - - - 28 31 64 - 60 200 200 200 217 1000  

Model 2 - 45 150 3 2 95 92 8 100 100 - - 595  

Total - 45 150 31 33 159 92 68 300 300 200 217 1595  

E
n

g
in

es
 Model 1 - - -            

Model 2               

Model 3               

Total               

Spare parts for sale 614 1095 1242 1289 2396 2257 1633 895 895 895 895 895 15000  

Total Value (4 periods)               

Total Value (12 periods)       

Total Value (24 periods)     

Total Value ( 1 Year )    
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In Hunger 6, the process-planning department develops the operation plans 

and process sheets for each part to be processed. A copy of each operation plan is 

released to the control room in the hunger. Control room in turn contacts the material 

department to deliver the required materials. The operation plan is issued for the shop 

floor level at the control room with a job card for each part. Then, experienced 

workers set the machine and begin processing to achieve the required level of 

accuracy.  

 

The job card summarizes the information related to the part and the operation, 

including part name and number, quantity, customer, operation plan number, machine 

number, and the estimated times. Besides, it is a time record to follow the execution 

of the process sheet and to calculate the actual working hours. The process sheet is a 

brief summary of all the operations needed for the part, while the operation plan (See 

Fig.5.2) shows the setting and tooling requirements, estimated setup and processing 

times and the working drawing. 

  

5.1.1 Shop Loading 

 

 Actually, jobs are assigned to machines so as to have all machines working if 

possible. For example if there are m machines of the same type and m parts to be 

processed on that type of machine, then each part would be assigned to a machine 

although one machine can perform all the jobs with some scheduling efforts. 

 

 

5.2 SUGGESTING THE GS SYSTEM 

 

The suggested GS system in brief, requires classifying the parts into a number 

of part-families. For each part family there will be a family setup, which is the 

common setting among the parts contained in the family. It is expected that each  part 

will  still have special setting requirements. The times for these special 
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Fig. 5-2 Example of an Operation Plan 
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requirements will be included in the part’s processing time. Machines currently used 

to process the parts will constitute a manufacturing cell, but machines will not be 

rearranged. However, flow pattern of jobs through machines will be changed to the 

flow line pattern (unidirectional flow). 

 

 Defining the cell and the part families, the time for setting each machine for 

each family is estimated. In addition, the processing times for jobs after including the 

special job settings will be estimated. Afterward, the system is  ready to be scheduled 

using the GS approach. 

 

The required information to apply the study and make the required changes are 

the processing times for jobs, the setup times, the setting requirements (tools, jigs, 

fixtures,… ), and the sequence of processing of each part through the required 

machines. The information is supposed to be found in the operation plans and 

processes sheets. 

 

5.2.1 Performing The Suggested Changes 

 

First trial to apply the study was carried out in the gears workshop, which may 

be considered a separated section in Hunger 6. It was expected that parts would show 

similarities in terms of processing requirements. After collecting the necessary 

information available, the following were observed:  

 

1. Extensive uses of heat treatment operations for most of the parts in-between the 

machining operations. Heat treatments take relatively very long times, besides 

being performed outside Hunger 6. 

2. The workshop size is big and the number of parts in it is larger than what is 

recommendable in such a study. 

3. Applying the production-flow analysis technique [29] to formulate part-

families and define the related cells, there were no positive results. This means that 

the similarities among the parts are not in an encouraging level. 
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Consequently, conducting the study in the gear workshop was not fruitful, and 

was abandoned. A second trial was carried out in the heat treatment department. This 

was not also found to be the proper place for the study due to the nature of the heat 

treatment work. 

 

Consequently, it was preferable to perform the study to a selected sample of 

parts that are processed in Hunger 6. A sample of parts was selected based on which 

the general guidelines of the suggested manufacturing cell and the part families it will 

be dedicated for would be defined. The front and rear axles of one model of truck 

were chosen. The axles consist of 42 parts, a list of them is shown in Table 5.1.  

 

Table 5.1 List of part for the front and rear axles selected 

No 
Part 

No. 
Qt Part description No 

Part 

No. 
Qt Part description 

1 III 284 4 Bush 22 V 106 5 Nut 

2 III 293 4 Locking bolt 23 V  107 4 Differential pinion 

3 III 302 4 Bolt 24 V  209 2 Spacer ring 

4 IV 318 1 Cable lever left hand 25 V  218 2 Rear stup axle 

5 IV 319 1 Cable lever right hand 26 V  219 2 Rear wheel hub 

6 IV 534 4 Brake drum 27 V  222 2 Distance ring 

7 IV 536 2 Rear axle shaft 28 V  225 2 Driver axle 

8 V    80 1 Rear axle drive housing 29 VI 362 1 Front axle 

9 V    86 1 Front cover rear axle housing 30 VI 365 2 King pin 

10 V   89 1 Bevel pinion 31 VI 509 2 Stub axle 

11 V   91 1 Crown wheel 32 VI 512 1 Tie rod arm 

12 V   92 1 Collar nut 33 D 1568 1 Steering arm 

13 V   94 1 Drive flange 34 M  528 40 Wheel stud 

14 V   96 1 Bearing bush 35 M  529 2 Support 

15 V   97 1 Internal ring 36 M  530 2 Thrust piece 

16 V   99 1 Differential case 37 M  531 2 Hose clip 

17 V 100 1 Cover differential case 38 M  532 2 Shoe brake 

18 V 101 2 Friction washer 39 M  533 4 Thrust piece 

19 V 102 1 Spider 40 M  539 2 Screw 

20 V 103 1 Spider 41 M  573 2 Front wheel hub 

21 V 104 2 Differential wheel 42 M  615 2 Cable steel 
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 Available related data for the selected parts were collected. Table C.1 in 

Appendix C shows the selected parts and the machines currently used for their 

manufacture. Numbers in the table are indicating the technological order of 

operations for each part. It is observed that jobs are not flowing in the same direction. 

Backtracking occurs frequently. Besides that a number of successive operations for 

one part may be performed on the same machine. 

 

To switch to GS it is required to reduce the number of machines needed and to 

remove and prevent backtracking. More important is to establish a unidirectional 

flow pattern for all the parts. To achieve these, parts will be reassigned to machines 

and machines will be exchanged as needed to carry out the required modifications.  

 

Nine parts were excluded due to the need to heat treatments in-between the 

machining operations. Special operations that occur at the start or the end of the 

processing of a part are removed and considered as out-of-cell operations. These 

operations include some heat treatment, galvanizing, priming, phosphating, and sand 

blasting. Consequently, the list in Table C.1 could be reduced to be as shown in Table 

5.2. The number of machines required was reduced to from about 180 to 73 machines 

through which parts ( 33 parts ) are flowing in a unidirectional flow pattern. Based on 

the new situation shown in Table 5.2, new operation plans for each part were 

developed. 

 

 Concerning the changes and modifications made to the current job-machine 

relationships, the following notes are listed: 

 

1. All changes are accepted by the process planning department. in Hunger 6. 

2. The coding system of the machines in the company was found to contain errors 

and conflicting data about machines capabilities and being replaceable to each 

other. Consequently, the process of reassigning jobs among machines had to be 

repeated several times within the study.  
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Table 5.2  See Excel File 
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3. Some errors were found in indicating a machine for a certain job in the 

operation plans. This is corrected at the shop floor level by assigning the job to 

the suitable machine not necessarily the one indicated in the operation plan. 

Consequently, timing and settings in the operation plans may not be the actual 

or the correct information. 

4. There are no rules to estimate the setup times in the process planning 

department. The estimation depends on the personal judgment of the estimator. 

5. The size of the cell is still large, however this is accepted since only traditional 

machines are present. In addition, this is the smallest number of machines 

based on the available information about machine replacability. 

6. Parts listed Table 5-1 are not the only work that the cell will be dedicated for. 

These parts are a sample used to define the cell and identify the part family 

membership. Once the cell and part families are defined, other work can be 

assigned to the cell given its capabilities. New part families can be formulated 

so that to make full use of the cell.  

7. Effect of separating the machines required on the progress of the work in 

Hunger 6 was neglected given that no unique machines are involved. 

 

 

5.3 FORMULATING PART FAMILIES 

 

 Having the modified operations plans, the next step is to formulate the part 

families of the parts in consideration. In this step, parts that are processed on the 

same machines are checked for the existence of common settings among them at each 

machine. The common setup will be the family setup (major setup), and the family 

will consist of these parts. 

 

 Table 5.2 was studied to find out the similar parts. Parts that are processed on 

same machines were identified. However, it was found that similarities among parts 

in terms of setting requirements did not occur as expected. 
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Table 5.3 Common settings for parts 99V and 100V on machine 120002 

 Description Code number 

1 Power operated chuck KL 400 

2 Setting gauge B 9654 – 010 – N002 

3 Boring bar C 9407 – 470 – N001 

4 Turning tool S 218 – 1616 – 60 – HSS 

5 Turning tool S 166 – 1625 – 150 – P30 

6 Turning tool S 459 – 98 – 90 – K20 

 

It was found that some parts may share only some of all the machines 

necessary for their processing. Further, parts processed on the same machine may not 

have any common settings on this machine. An example for the parts sharing only 

some of the necessary machines for their processing are parts 99V and 100V. 

Nevertheless, the common settings are not found for all the shared machines. 

 

Both parts 99V and 100V are processed on machine 120002. Out of 15 

settings for 99V and 11 settings for 100V, common settings between them are shown 

in Table 5.3. These settings would be the family settings for the family consisting of 

these two parts on machine 120002. Parts 534 IV and 573M are processed on 

machine 120002 as well. No settings were found common between the two parts and 

neither of them has common settings with 99V and 100 V. 

 

 Parts 318 IV and 319 IV are processed on the same machine for all the 

necessary operations. Both share the same settings on all machines. Thus, they can be 

considered to be a part family. However, no more parts could be appended to this part 

family. 

 

Such examples of parts similarity were found very rare among the parts listed 

in Table 5.2. Consequently it was not possible to formulate the part families. 
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5.4 RESULTS OF THE CASE STUDY 

 

 The objective of the case study was to explore the possibility to apply the GS 

model to an existing traditional discrete parts manufacturer without formulating a cell 

physically. The cell and part families were supposed to be defined based on already 

existing operation plans. The following can be concluded from the this study: 

 

1. Group scheduling is applicable in traditional flow shops without formulating 

cells physically. 

2. To achieve this it is necessary to consider the GT principles in the first stages 

of developing the operation plans and machine loading, such that part 

families membership are in prospect from the beginning. 

3. For the workshop considered in the study, it was found that formulating part 

families for group scheduling, based on an existing situation leads to 

unpredictable results. 

4. Converting a job shop into a flow shop is possible without the rearrangement 

of the machines. 
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CHAPTER  6 

 

CONCLUSIONS AND RECOMMENDATIONS 

  

The group scheduling (GS) model was investigated while studying the relative 

performance of selected simple and iterative GS heuristics in a flow line 

manufacturing cell that is dedicated for the processing of a number of part-families. 

Heuristics were modified in order to improve their performance and explore the 

characteristics of the GS model. A timetabling procedure that can account for the 

presence of zero processing times in a multi-family cell is proposed. Besides, a case 

study was conducted to investigate the applicability of GS to a traditional batch 

production system. The main conclusions and recommendation for future work are 

summarized as follows. 

 

6.1 CONCLUSIONS 

 

1. The proposed modifications to the group scheduling heuristics studied were 

found effective and preferable to the original formulations for the Cambell, Dudek 

and Smith (CDS), simulated annealing (SA), and tabu search (TS) techniques. The 

proposed CDS-M-2, SA-M-3 and TS-M-1 are the best performing heuristic 

versions each in its class.  

 

2. The two-phase nature of group scheduling model should be considered in the 

group scheduling heuristic methods in order to compensate for the possible 

interaction between the two phases of scheduling. 

 

3. The iterative improvement techniques are preferable to the single, and multi 

pass methods not only because of their superior performance but because they can 

handle the phases’ interaction in group scheduling as well. 
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4. The tabu search (TS) technique is found preferable in general to the simulated 

annealing (SA) technique. Tabu search is more robust when increasing problem 

sizes than simulated annealing. It offers the possibility to redefine its components 

to include more relevant search-based information thus to increase its efficiency. 

 

5. The change-dependent acceptance probability in the simulated annealing 

heuristic is more efficient than the change-independent acceptance probability. 

Moreover, simulated annealing technique needs to incorporate some form of 

control over the effect of the random numbers in its behaviour. 

 

6. The possibility of the zero processing times should be considered during 

timetabling calculations. It does not seem effective to consider the presence of the 

zero processing times in the structure of the scheduling heuristic. Rajendran’s 

modification [18,30] adopted in Hitomi and NEH was found ineffective. 

 

7. The proposed timetabling procedure for the multi-family manufacturing cells 

was shown to be effective in compensating for the consequences of the presence of 

the zero processing times and providing more realistic timetabling information.  

 

8. Due to the presence of zero processing times, it may not be always correct to 

define makespan as the time span from the start of the first job on the first machine 

to the finish of the last job on the last machine. Instead it is defined as the largest 

completion time. Makespan is not necessarily associated with the last job in 

schedule, or the last machine.  

 

9. The group scheduling approach is applicable in traditional flow shops without 

formulating the manufacturing cells physically. 
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6.2 RECOMMENDATION FOR FUTURE WORK 

 

1. Studying the group scheduling heuristic performance for different cell 

parameters other than the setup to run time ratio (S/R), and for other practical 

problem formulations. 

 

2. Applying the group scheduling technique adopted in the research to 

practical manufacturing cells and flow shops. 
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APPENDIX A 

 

RESULTS WITH RESPECT TO TOTAL FLOW TIME 

 

 Tables A.1 through A.8 shows the results of solving the experimental group 

scheduling problems using the heuristics under study, with respect to the total flow 

time, a table for each problem size. The table is divided into three parts vertically one 

for each S/R ratio. For each heuristic at each S/R, the relative total flow time (RELF) 

is listed in the first column. Relative makespan for the solution (AMF) is given in the 

second column and the third column exhibits the computational times (CPU) in 

seconds. 

 

 The iterative improvement methods in the tables of results are named as in the 

following table for all tables in both appendices A and B, and in Chapter 4 as well. X 

and R are for using a random initial solution, H for using a relatively goo initial 

solution generated by Hitomi. GP takes values of 0.1, 0.3, 0.5, 0.7, and 0.9 in SA 

methods in the study of the effect of the GP factor. 

 

Heuristic Name Heuristic Name 

Original Hitomi HITOMI Original Tabu TABU-X 

Hitomi-Mod HIT-M Tabu-Mod-1 T-X-M-1 

  Tabu-Mod-2 T-X-M-2 

Original CDS CDS   

CDS-Mod-1 CDS-M-1 Original SA SA-X-GP 

CDS-Mod-2 CDS-M-2 SA-Mod-1 SA-X-1GP 

CDS-Mod-3 CDS-M-3 SA-Mod-2 SA-X-2GP 

  SA-Mod-3 SA-X-3GP 

Original NEH NEH   

NEH-Mod-1 NEH-M-1   

 

 

 



 

 

127 

Table A.1 Results for 3x3x3-problem size with total flow time as the performance criterion 
 

                   3 x 3 x 3 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 .009 100.00 100.00 .011 100.00 100.00 .009 

HIT-M 100.09 100.29 .007 100.77 100.44 .009 100.32 100.28 .009 

CDS 98.997 99.024 .038 98.970 100.00 .033 98.523 99.049 .029 

CDS-M-1 98.661 99.060 .033 98.672 99.794 .035 98.340 99.049 .031 

CDS-M-2 98.966 99.024 .046 98.890 99.840 .042 98.427 99.076 .046 

CDS-M-3 98.991 98.951 .024 98.791 99.634 .049 98.229 98.897 .046 

NEH 92.378 103.65 .040 93.385 102.20 .046 94.341 101.79 .042 

NEH-M-1 92.155 103.40 .046 93.449 101.92 .040 94.316 101.81 .037 

          
TABU-R 90.930 100.90 3.018 91.576 100.50 3.050 92.489 99.890 2.978 

T-R-M-1 91.857 101.92 2.948 92.041 100.94 2.953 92.378 99.835 2.890 

T-R-M-2 91.464 101.81 2.964 92.101 100.78 2.957 92.465 100.30 2.948 

TABU-H 90.943 100.69 2.988 91.902 100.69 2.890 92.253 99.917 2.987 

T-H-M-1 91.603 100.43 2.883 91.763 100.57 2.887 92.473 99.848 2.894 

T-H-M-2 91.667 100.18 2.876 91.794 100.92 2.909 92.480 99.835 2.944 

          
SA-R-.1 91.292 102.86 4.354 93.202 100.18 4.300 92.159 99.573 4.354 

SA-R-.3 91.051 102.42 4.353 91.544 100.55 4.278 92.115 99.766 4.344 

SA-R-.5 90.067 101.19 4.333 91.464 100.94 4.270 92.164 99.628 4.325 

SA-R-.7 90.645 101.77 4.315 91.333 100.30 4.262 92.391 99.848 4.312 

SA-R-.9 90.245 101.59 4.297 91.289 100.69 4.252 92.130 99.890 4.299 

SA-R-1.1 93.317 103.22 4.400 91.588 100.73 4.331 92.917 99.642 4.381 

SA-R-1.3 90.651 102.86 4.387 91.393 100.89 4.324 92.253 100.10 4.372 

SA-R-1.5 91.806 101.92 4.369 91.373 100.64 4.315 92.106 99.683 4.363 

SA-R-1.7 89.985 101.09 4.355 91.245 100.71 4.293 92.072 99.807 4.357 

SA-R-1.9 90.937 101.95 4.338 91.321 100.55 4.288 92.111 99.986 4.341 

SA-R-2.1 90.099 101.37 4.343 91.237 100.55 4.288 92.226 99.614 4.337 

SA-R-2.3 90.321 101.74 4.344 91.226 100.55 4.277 92.067 99.862 4.326 

SA-R-2.5 89.972 101.30 4.328 91.226 100.57 4.266 92.067 99.711 4.321 

SA-R-2.7 89.978 101.66 4.321 91.241 100.55 4.253 92.067 99.711 4.305 

SA-R-2.9 90.042 101.77 4.307 91.345 100.76 4.238 92.111 99.711 4.278 

SA-R-3.1 90.664 101.66 4.383 91.345 100.57 4.318 92.067 99.766 4.376 

SA-R-3.3 89.972 101.45 4.382 91.226 100.53 4.315 92.067 99.766 4.366 

SA-R-3.5 89.972 101.30 4.363 91.226 100.55 4.294 92.067 99.724 4.351 

SA-R-3.7 89.978 101.37 4.357 91.233 100.55 4.302 92.067 99.724 4.343 

SA-R-3.9 90.188 101.66 4.340 91.257 100.48 4.277 92.101 99.793 4.332 

SA-H-.1 92.162 101.88 4.385 91.719 100.64 4.318 92.977 100.15 4.370 

SA-H-.3 90.353 101.95 4.341 91.468 100.57 4.308 92.067 99.711 4.351 

SA-H-.5 90.467 101.30 4.342 91.548 100.99 4.275 92.072 99.779 4.330 

SA-H-.7 90.143 101.19 4.325 91.345 100.85 4.258 92.077 99.793 4.309 

SA-H-.9 90.569 102.46 4.305 91.568 100.44 4.243 92.089 99.766 4.293 

SA-H-1.1 91.711 101.99 4.427 91.918 100.89 4.257 92.292 99.917 4.420 

SA-H-1.3 90.226 102.13 4.410 91.397 100.71 4.347 92.243 99.835 4.412 

SA-H-1.5 90.283 101.30 4.399 91.691 100.55 4.335 92.072 99.710 4.382 

SA-H-1.7 90.042 101.09 4.382 91.229 100.53 4.312 92.772 102.42 4.373 

SA-H-1.9 90.772 102.42 4.372 91.301 100.96 4.310 92.098 99.848 4.357 

SA-H-2.1 89.991 101.37 4.384 91.226 100.71 4.328 92.103 99.683 4.375 

SA-H-2.3 89.972 101.37 4.368 91.230 100.41 4.300 92.067 99.779 4.356 

SA-H-2.5 89.972 101.66 4.358 91.233 100.62 4.289 92.067 99.779 4.346 

SA-H-2.7 89.978 101.66 4.334 91.226 100.57 4.277 92.072 99.779 4.323 

SA-H-2.9 90.036 101.74 4.326 91.301 100.80 4.258 92.106 99.766 4.309 

SA-H-3.1 90.112 101.16 4.409 91.225 100.39 4.359 92.067 99.793 4.402 

SA-H-3.3 89.972 101.45 4.407 91.225 100.39 4.338 92.067 99.710 4.389 

SA-H-3.5 89.972 101.30 4.381 91.397 100.76 4.338 92.067 99.793 4.389 

SA-H-3.7 89.972 101.16 4.378 91.229 100.53 4.313 92.072 99.724 4.361 

SA-H-3.9 90.029 101.48 4.371 91.289 100.73 4.302 92.101 99.848 4.358 
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Table A.2 Results for 3x4x5-problem size with total flow time as the performance criterion 

 

                   3 x 4 x 5 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 .021 100.00 100.00 .020 100.00 100.00 .021 

HIT-M 100.53 101.51 .018 100.62 100.64 .018 100.03 100.42 .016 

CDS 97.613 99.643 .101 97.082 97.636 .100 97.307 98.131 .103 

CDS-M-1 97.340 99.770 .102 96.905 98.027 .103 97.348 98.210 .103 

CDS-M-2 96.196 98.621 .167 96.430 96.676 .157 96.920 98.457 .141 

CDS-M-3 96.132 98.672 .165 96.939 97.387 .150 97.159 98.637 .152 

NEH 92.462 103.19 .217 92.531 100.12 .216 93.784 101.53 .209 

NEH-M-1 92.470 103.58 .215 92.386 99.893 .207 93.829 101.61 .214 

          
TABU-R 91.072 102.04 17.509 92.042 97.653 16.439 92.989 100.15 16.317 

T-R-M-1 91.819 101.94 16.074 92.474 98.507 14.985 92.725 99.257 16.038 

T-R-M-2 91.980 102.40 16.507 92.828 98.187 14.506 93.335 99.786 15.840 

TABU-H 91.664 101.30 16.691 92.166 98.169 15.570 92.550 99.426 15.741 

T-H-M-1 92.425 100.38 15.253 92.181 97.547 15.015 92.714 98.547 15.146 

T-H-M-2 92.304 99.821 15.418 92.317 98.133 14.949 92.751 98.626 15.226 

          
SA-R-.1 93.319 102.43 9.136 93.031 99.218 9.107 93.907 99.572 9.059 

SA-R-.3 93.603 102.91 9.117 91.063 97.404 9.083 92.215 99.258 9.048 

SA-R-.5 91.125 100.97 9.101 91.751 98.471 9.083 92.081 99.662 9.030 

SA-R-.7 90.847 101.20 9.071 91.559 97.991 9.061 92.050 99.640 9.014 

SA-R-.9 91.712 102.43 9.066 92.149 98.009 9.047 92.369 99.122 8.984 

SA-R-1.1 93.807 103.35 9.218 92.580 98.240 9.193 93.429 99.324 9.155 

SA-R-1.3 91.830 101.30 9.196 91.456 97.653 9.170 93.105 99.809 9.131 

SA-R-1.5 92.427 103.01 9.187 91.805 97.173 9.152 92.326 99.054 9.116 

SA-R-1.7 91.417 101.23 9.151 92.341 97.973 9.125 92.864 100.06 9.079 

SA-R-1.9 92.829 102.25 9.124 91.901 98.667 9.098 92.622 99.651 9.065 

SA-R-2.1 89.992 101.20 9.089 90.580 97.404 9.068 91.634 99.043 9.029 

SA-R-2.3 89.740 100.54 9.089 90.447 97.173 9.063 91.528 98.930 9.013 

SA-R-2.5 89.944 100.46 9.080 90.458 97.102 9.050 91.683 99.099 9.012 

SA-R-2.7 90.279 100.54 9.087 90.746 96.711 9.054 91.792 98.874 9.006 

SA-R-2.9 91.693 101.92 9.063 91.366 96.996 9.041 92.273 99.065 9.001 

SA-R-3.1 89.861 99.770 9.138 90.571 96.996 9.114 91.838 99.009 9.079 

SA-R-3.3 89.478 101.10 9.138 90.415 97.262 9.123 91.593 98.806 9.071 

SA-R-3.5 89.722 100.87 9.138 90.560 97.476 9.108 91.547 99.268 9.060 

SA-R-3.7 89.971 102.12 9.140 90.838 97.760 9.111 91.790 98.919 9.064 

SA-R-3.9 91.533 100.82 9.136 91.383 97.884 9.102 92.223 98.896 9.070 

SA-H-.1 94.026 101.58 9.198 93.376 98.347 9.187 93.595 100.65 9.131 

SA-H-.3 92.323 101.74 9.166 91.298 97.636 9.147 92.328 99.200 9.111 

SA-H-.5 91.366 100.20 9.151 91.390 97.813 9.116 92.314 99.899 9.072 

SA-H-.7 91.629 101.40 9.119 91.381 97.404 9.089 92.336 99.291 9.052 

SA-H-.9 91.964 101.18 9.080 91.976 98.169 9.059 92.660 99.764 9.017 

SA-H-1.1 93.376 101.51 9.303 93.064 98.382 9.270 93.523 98.975 9.222 

SA-H-1.3 91.348 101.66 9.270 91.512 97.387 9.238 92.600 98.885 9.198 

SA-H-1.5 91.147 101.51 9.245 91.176 97.404 9.226 92.145 99.077 9.171 

SA-H-1.7 91.508 101.58 9.220 91.601 97.547 9.196 92.332 99.752 9.152 

SA-H-1.9 91.841 101.81 9.189 91.834 97.476 9.168 92.451 99.279 9.131 

SA-H-2.1 90.531 101.51 9.123 90.793 97.209 9.111 91.733 98.998 9.063 

SA-H-2.3 89.949 100.31 9.123 90.659 96.853 9.089 91.577 98.446 9.050 

SA-H-2.5 89.786 100.74 9.107 90.483 97.724 9.083 91.573 99.099 9.043 

SA-H-2.7 90.065 101.12 9.092 90.601 96.658 9.064 91.618 99.122 9.032 

SA-H-2.9 91.468 101.18 9.086 91.680 97.511 9.048 92.157 99.133 9.012 

SA-H-3.1 91.101 101.18 9.207 90.823 96.942 9.176 91.645 98.930 9.136 

SA-H-3.3 89.719 100.08 9.195 90.573 97.707 9.170 91.596 98.480 9.127 

SA-H-3.5 89.478 100.26 9.192 90.377 97.084 9.184 91.548 99.133 9.122 

SA-H-3.7 89.765 101.05 9.187 90.802 97.102 9.167 91.924 99.178 9.119 

SA-H-3.9 90.957 101.05 9.177 91.294 96.978 9.162 92.218 98.716 9.115 
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Table A.3 Results for 4x4x4-problem size with total flow time as the performance criterion 

 

                   4 x 4 x 4 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 .022 100.00 100.00 .020 100.00 100.00 .018 

HIT-M 100.65 100.84 .020 100.52 100.59 .020 100.07 100.20 .018 

CDS 98.510 99.509 .118 98.376 100.00 .119 97.751 98.536 .110 

CDS-M-1 99.291 100.47 .121 98.180 99.985 .119 97.718 98.619 .122 

CDS-M-2 96.784 98.224 .198 97.171 98.886 .188 97.099 97.210 .191 

CDS-M-3 97.094 98.411 .197 97.097 98.827 .200 97.155 97.201 .182 

NEH 93.851 102.95 .192 94.464 102.82 .188 93.766 99.602 .192 

NEH-M-1 93.695 102.67 .191 94.338 102.48 .195 93.785 99.602 .194 

          
TABU-R 93.452 100.91 17.932 92.651 99.076 17.492 91.581 97.535 16.943 

T-R-M-1 93.683 101.15 18.045 92.748 99.516 17.514 91.541 97.692 16.042 

T-R-M-2 93.115 99.766 18.750 92.407 98.812 17.422 91.699 98.082 16.261 

TABU-H 93.586 99.790 16.466 92.306 98.739 17.508 91.348 96.738 16.148 

T-H-M-1 92.834 98.598 16.250 92.060 98.079 17.208 91.220 97.127 16.187 

T-H-M-2 93.094 99.159 16.768 92.501 97.932 17.027 91.511 97.739 16.492 

          
SA-R-.1 95.820 101.89 9.896 93.487 98.974 9.974 91.280 96.589 9.950 

SA-R-.3 92.841 100.30 9.873 93.077 99.487 9.965 90.926 96.738 9.923 

SA-R-.5 92.747 99.953 9.849 91.943 98.666 9.937 91.117 97.349 9.910 

SA-R-.7 92.053 99.883 9.828 91.476 98.446 9.912 90.567 96.589 9.890 

SA-R-.9 92.445 100.09 9.811 92.122 98.402 9.894 90.903 96.608 9.857 

SA-R-1.1 95.885 102.10 9.982 93.191 99.281 10.07 91.645 97.461 10.04 

SA-R-1.3 94.702 101.96 9.958 92.006 99.296 10.06 90.746 96.145 10.02 

SA-R-1.5 92.555 99.813 9.937 91.936 98.930 10.02 90.868 97.127 10.00 

SA-R-1.7 92.808 100.54 9.918 91.527 98.270 10.01 90.586 97.192 9.975 

SA-R-1.9 92.731 100.02 9.901 91.608 98.504 9.985 90.741 96.636 9.958 

SA-R-2.1 93.195 100.98 9.833 91.579 98.138 9.915 90.358 97.044 9.893 

SA-R-2.3 91.459 99.252 9.826 91.226 98.108 9.918 90.183 96.210 9.889 

SA-R-2.5 91.411 100.16 9.807 90.949 98.108 9.897 90.155 96.534 9.872 

SA-R-2.7 91.945 100.70 9.792 90.882 97.214 9.884 90.218 96.478 9.855 

SA-R-2.9 92.019 99.813 9.799 91.378 97.874 9.876 90.623 96.868 9.848 

SA-R-3.1 92.570 101.43 9.894 91.817 98.812 9.977 90.341 96.691 9.961 

SA-R-3.3 91.957 100.33 9.881 91.151 98.211 9.967 90.130 96.849 9.950 

SA-R-3.5 91.521 100.35 9.880 90.816 97.859 9.966 90.144 96.571 9.949 

SA-R-3.7 91.211 99.346 9.869 90.895 97.536 9.952 90.276 96.589 9.925 

SA-R-3.9 92.353 98.995 9.855 91.419 98.358 9.947 90.573 96.747 9.917 

SA-H-.1 96.139 100.94 9.938 93.803 99.736 10.03 91.558 97.442 10.00 

SA-H-.3 94.471 100.73 9.910 92.824 99.091 10.00 91.043 97.377 9.976 

SA-H-.5 93.781 101.47 9.879 92.729 98.812 9.972 90.726 96.358 9.940 

SA-H-.7 92.041 100.80 9.837 91.778 98.578 9.931 90.731 96.552 9.901 

SA-H-.9 92.526 100.35 9.816 91.772 98.167 9.895 90.747 96.923 9.870 

SA-H-1.1 95.421 101.87 10.03 94.103 99.839 10.12 91.571 97.924 10.10 

SA-H-1.3 94.040 101.36 10.01 92.731 99.223 10.11 91.178 96.784 10.08 

SA-H-1.5 93.007 100.02 10.00 91.532 98.284 10.09 90.657 96.664 10.05 

SA-H-1.7 92.716 100.21 9.978 91.545 97.903 10.08 90.509 96.96 10.05 

SA-H-1.9 92.817 99.720 9.961 91.958 98.402 10.06 90.744 96.654 10.03 

SA-H-2.1 91.904 100.35 9.837 91.516 98.754 9.929 90.491 96.506 9.900 

SA-H-2.3 92.298 99.509 9.817 91.068 97.903 9.910 90.208 96.552 9.880 

SA-H-2.5 91.793 100.47 9.808 91.500 98.798 9.892 90.200 96.905 9.874 

SA-H-2.7 91.452 99.462 9.793 90.889 97.786 9.872 90.281 96.552 9.863 

SA-H-2.9 91.957 100.16 9.766 91.517 97.903 9.863 90.493 96.608 9.829 

SA-H-3.1 92.296 100.40 9.969 91.160 97.786 10.05 90.497 96.219 10.04 

SA-H-3.3 92.017 100.19 9.944 90.963 98.182 10.04 90.209 96.673 10.02 

SA-H-3.5 91.469 99.696 9.960 90.816 98.314 10.05 90.114 96.821 10.02 

SA-H-3.7 91.716 99.603 9.946 91.083 98.138 10.05 90.309 97.034 10.02 

SA-H-3.9 91.844 99.790 9.952 91.206 97.507 10.04 90.430 97.053 9.999 
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Table A.4 Results for 6x5x4-problem size with total flow time as the performance criterion 

 

                   6 x 5 x 4 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 .035 100.00 100.00 .035 100.00 100.00 .033 

HIT-M 100.44 100.82 .036 100.52 100.78 .037 100.00 100.07 .035 

CDS 96.944 98.726 .339 97.881 99.213 .334 98.467 99.688 .332 

CDS-M-1 96.865 99.071 .341 97.663 99.374 .345 98.365 99.748 .343 

CDS-M-2 95.954 97.497 .584 96.215 97.648 .661 96.726 97.949 .591 

CDS-M-3 95.452 97.497 .648 96.173 97.820 .624 96.573 97.991 .622 

NEH 91.621 100.38 .493 94.508 100.90 .498 94.484 100.44 .497 

NEH-M-1 91.517 100.54 .496 94.358 100.80 .497 94.485 100.37 .502 

          
TABU-R 90.542 99.176 78.168 91.356 98.678 76.910 91.403 97.175 76.397 

T-R-M-1 90.169 98.472 76.581 90.732 97.809 75.335 91.070 97.235 77.175 

T-R-M-2 90.041 98.771 82.929 91.141 98.456 75.474 91.342 97.038 73.839 

TABU-H 90.199 97.857 76.235 91.248 98.688 75.677 91.661 96.936 75.644 

T-H-M-1 89.511 97.467 75.477 90.796 97.870 74.118 91.059 96.258 75.036 

T-H-M-2 89.681 97.557 75.155 91.025 97.698 74.808 91.189 96.072 76.857 

          
SA-R-.1 93.236 100.06 18.390 94.122 100.71 18.434 92.932 98.603 18.421 

SA-R-.3 91.754 99.266 18.346 93.008 99.970 18.402 92.457 98.171 18.396 

SA-R-.5 90.807 99.371 18.310 91.606 98.274 18.377 91.600 97.247 18.265 

SA-R-.7 89.896 98.412 18.276 91.761 98.526 18.321 91.433 96.630 18.335 

SA-R-.9 90.386 98.951 18.236 90.967 98.112 18.288 91.463 97.121 18.288 

SA-R-1.1 92.055 98.576 18.521 93.078 99.859 18.587 93.076 98.291 18.584 

SA-R-1.3 91.800 99.191 18.487 91.801 99.071 18.541 91.818 96.840 18.548 

SA-R-1.5 91.313 99.146 18.462 91.592 98.021 18.510 91.603 96.852 18.515 

SA-R-1.7 90.194 99.176 18.429 91.193 98.314 18.492 91.657 96.726 18.482 

SA-R-1.9 90.546 99.116 18.380 91.351 98.385 18.456 91.018 96.882 18.434 

SA-R-2.1 91.388 100.18 18.243 91.525 98.355 18.298 91.501 96.114 18.293 

SA-R-2.3 89.421 98.292 18.227 91.393 98.294 18.288 90.976 97.385 18.270 

SA-R-2.5 89.877 98.681 18.204 90.411 98.516 18.253 90.366 96.396 18.265 

SA-R-2.7 88.723 97.467 18.190 90.425 97.840 18.241 90.599 96.900 18.235 

SA-R-2.9 89.412 97.363 18.154 90.457 97.840 18.213 90.526 96.474 18.209 

SA-R-3.1 91.293 100.12 18.279 91.615 98.355 18.350 91.856 96.978 18.350 

SA-R-3.3 90.626 98.591 18.285 90.656 97.749 18.326 90.524 96.708 18.334 

SA-R-3.5 89.191 97.767 18.273 90.422 98.072 18.320 90.622 96.348 18.325 

SA-R-3.7 89.369 98.412 18.262 90.208 97.628 18.321 90.691 96.492 18.322 

SA-R-3.9 89.373 98.217 18.236 90.286 98.092 18.313 90.523 96.354 18.292 

SA-H-.1 93.021 99.521 18.405 94.180 99.960 18.459 93.548 97.583 18.453 

SA-H-.3 91.624 99.685 18.360 92.620 99.647 18.399 91.703 97.080 18.413 

SA-H-.5 92.154 100.64 18.315 92.618 99.273 18.376 91.569 97.403 18.373 

SA-H-.7 91.126 99.595 18.271 92.012 97.961 18.337 91.578 96.894 18.327 

SA-H-.9 90.188 98.546 18.233 91.336 98.274 18.285 91.279 96.846 18.292 

SA-H-1.1 93.407 101.21 16.623 93.039 100.29 18.680 93.172 98.111 18.673 

SA-H-1.3 92.320 98.531 18.603 92.110 99.243 18.651 91.852 96.924 18.651 

SA-H-1.5 91.243 99.640 18.576 91.379 98.960 18.636 91.594 96.714 18.636 

SA-H-1.7 90.077 97.962 18.556 91.727 98.456 18.611 91.359 97.247 18.606 

SA-H-1.9 90.400 98.307 18.532 91.183 98.627 18.593 91.212 96.750 18.598 

SA-H-2.1 90.666 98.382 18.313 91.391 98.910 18.365 92.203 97.859 18.372 

SA-H-2.3 90.227 98.996 18.277 90.642 98.233 18.342 91.060 96.888 18.336 

SA-H-2.5 90.370 98.307 18.277 90.067 97.820 18.315 90.620 96.534 18.320 

SA-H-2.7 88.784 97.422 18.248 90.171 98.425 18.312 90.432 96.018 18.298 

SA-H-2.9 89.495 98.472 18.225 90.279 98.183 18.283 90.453 96.288 18.279 

SA-H-3.1 90.507 98.472 18.491 92.050 98.617 18.548 91.939 96.948 18.543 

SA-H-3.3 89.518 98.142 18.470 90.361 97.416 18.536 90.738 96.840 18.538 

SA-H-3.5 89.307 97.363 18.473 90.039 97.759 18.523 90.853 97.002 18.508 

SA-H-3.7 89.148 98.606 18.457 90.421 97.890 18.522 90.334 95.856 18.504 

SA-H-3.9 89.719 98.262 18.448 90.352 98.355 18.504 90.500 95.460 18.498 
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Table A.5 Results for 5x5x5-problem size with total flow time as the performance criterion 

                   5 x 5 x 5  Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 .036 100.00 100.00 .042 100.00 100.00 .035 

HIT-M 100.70 100.95 .038 100.62 100.68 .037 100.18 100.27 .036 

CDS 98.384 99.669 .315 97.125 98.819 .319 97.445 98.628 .326 

CDS-M-1 98.675 100.46 .325 97.359 99.356 .328 97.706 98.885 .329 

CDS-M-2 96.444 97.317 .602 96.193 98.336 .565 95.754 97.631 .577 

CDS-M-3 96.479 97.459 .659 96.305 98.594 .587 95.658 97.423 .621 

NEH 93.625 100.68 .650 93.102 99.871 .659 95.049 99.813 .658 

NEH-M-1 93.975 101.07 .650 93.193 99.818 .657 95.044 99.855 .660 

          
TABU-R 92.903 99.621 79.601 91.834 97.950 78.089 92.217 98.033 72.328 

T-R-M-1 92.308 98.706 75.291 91.483 98.035 77.501 91.611 98.171 73.197 

T-R-M-2 92.576 98.153 77.447 91.906 98.615 75.234 91.746 98.046 73.788 

TABU-H 92.158 98.185 75.111 92.014 98.476 75.835 92.048 98.095 77.674 

T-H-M-1 91.695 97.522 74.595 91.432 97.842 75.004 91.746 97.839 77.951 

T-H-M-2 91.886 97.317 73.709 91.804 97.778 73.892 91.862 98.060 77.849 

          
SA-R-.1 95.827 99.684 18.865 94.819 100.40 18.962 92.549 98.857 18.898 

SA-R-.3 93.396 99.353 18.827 91.988 99.012 18.930 92.188 98.386 18.881 

SA-R-.5 92.957 99.416 18.800 91.748 98.529 18.894 91.754 97.742 18.850 

SA-R-.7 92.627 99.905 18.773 92.113 98.798 18.859 91.418 97.499 18.808 

SA-R-.9 93.002 99.006 18.716 91.541 98.197 18.817 91.923 97.998 18.765 

SA-R-1.1 95.936 100.87 19.024 93.757 99.345 19.119 92.714 98.296 19.070 

SA-R-1.3 95.214 100.22 18.988 92.110 98.583 19.081 91.710 97.797 19.037 

SA-R-1.5 94.845 100.06 18.936 91.470 97.756 19.025 91.397 97.638 18.992 

SA-R-1.7 92.617 98.895 18.906 91.975 98.304 18.994 91.325 97.430 18.942 

SA-R-1.9 92.468 98.075 18.851 91.509 97.402 18.937 91.931 98.310 18.890 

SA-R-2.1 93.471 99.037 18.676 92.113 98.400 18.780 91.086 97.284 18.724 

SA-R-2.3 90.825 98.264 18.671 90.589 97.713 18.756 90.452 97.534 18.723 

SA-R-2.5 91.443 98.359 18.657 90.027 97.917 18.752 90.401 96.973 18.707 

SA-R-2.7 91.097 97.443 18.648 90.637 97.552 18.744 90.807 97.222 18.696 

SA-R-2.9 91.534 98.264 18.644 90.934 97.928 18.739 90.962 97.264 18.686 

SA-R-3.1 92.860 98.627 18.747 90.976 98.057 18.854 91.153 97.846 18.789 

SA-R-3.3 91.287 98.343 18.745 90.807 97.821 18.849 90.571 97.264 18.789 

SA-R-3.5 91.035 97.238 18.749 90.578 97.585 18.837 90.431 97.769 18.798 

SA-R-3.7 91.002 98.453 18.752 90.497 97.681 18.835 90.606 96.751 18.797 

SA-R-3.9 91.961 99.006 18.744 90.610 97.649 18.829 90.958 97.271 18.779 

SA-H-.1 94.671 99.432 18.978 94.214 99.850 19.083 92.838 98.815 19.023 

SA-H-.3 94.130 100.00 18.993 92.692 99.528 19.079 92.166 98.123 19.031 

SA-H-.5 92.684 98.169 18.917 91.589 98.540 18.999 91.456 97.492 18.960 

SA-H-.7 94.195 99.258 18.879 91.518 98.121 18.966 91.659 97.998 18.921 

SA-H-.9 92.086 98.848 18.836 91.660 99.227 18.934 91.433 97.451 18.876 

SA-H-1.1 97.144 100.95 19.103 94.172 100.74 19.205 93.143 98.635 19.150 

SA-H-1.3 94.279 99.637 19.129 92.059 98.884 19.222 91.974 97.721 19.167 

SA-H-1.5 93.969 99.779 19.021 91.779 98.508 19.114 91.539 97.243 19.068 

SA-H-1.7 92.392 98.185 19.036 91.620 98.229 19.144 91.479 98.116 19.092 

SA-H-1.9 92.463 98.690 18.938 91.474 97.864 19.026 91.544 97.478 18.987 

SA-H-2.1 91.860 98.895 18.784 91.402 98.068 18.881 91.285 97.423 18.840 

SA-H-2.3 90.957 97.506 18.771 90.338 97.488 18.870 90.476 97.444 18.819 

SA-H-2.5 91.482 97.522 18.751 90.123 97.488 18.853 90.497 97.250 18.807 

SA-H-2.7 91.239 97.917 18.747 90.258 97.778 18.835 90.714 97.312 18.782 

SA-H-2.9 91.248 97.333 18.730 90.878 97.799 18.825 91.006 97.187 18.779 

SA-H-3.1 92.978 98.374 18.944 90.846 98.046 19.023 91.148 98.040 19.000 

SA-H-3.3 90.901 96.623 18.922 90.551 97.628 19.039 90.552 97.049 18.977 

SA-H-3.5 90.931 97.854 18.920 90.297 97.230 19.017 90.756 97.104 18.969 

SA-H-3.7 91.083 96.638 18.922 90.344 97.424 19.015 90.525 96.959 18.983 

SA-H-3.9 91.164 97.901 18.923 90.863 97.542 19.012 90.852 97.402 18.963 
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Table A.6 Results for 6x6x6-problem size with total flow time as the performance criterion 

 

                   6 x 6 x 6 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 0.064 100.00 100.00 0.063 100.00 100.00 0.066 

HIT-M 101.31 101.21 0.065 100.30 100.42 0.066 100.37 100.38 0.066 

CDS 96.991 98.234 0.747 96.912 98.521 0.761 98.412 99.593 0.751 

CDS-M-1 98.215 99.241 0.762 97.130 99.236 0.763 98.655 99.868 0.764 

CDS-M-2 95.861 97.079 1.445 95.454 96.937 1.554 96.969 98.277 1.588 

CDS-M-3 95.895 97.317 1.410 95.398 96.969 1.657 97.006 98.230 1.521 

NEH 93.334 102.03 1.830 93.449 100.72 1.832 94.325 100.47 1.824 

NEH-M-1 93.316 101.74 1.818 93.497 100.68 1.822 94.371 100.43 1.819 

          
TABU-R 93.597 100.84 286.70 91.249 97.572 273.32 92.221 97.289 268.34 

T-R-M-1 93.761 100.58 276.66 91.025 97.427 260.17 92.029 97.205 251.47 

T-R-M-2 94.442 101.37 281.69 91.310 97.781 263.41 92.498 97.744 250.17 

TABU-H 93.296 99.242 262.78 91.574 96.446 264.01 92.197 96.127 245.97 

T-H-M-1 92.753 99.162 264.64 91.042 96.044 262.76 91.712 96.016 249.38 

T-H-M-2 93.015 98.959 268.38 91.276 95.843 270.56 92.068 95.736 252.90 

          
SA-R-.1 96.158 101.43 32.265 94.034 98.673 32.399 93.928 97.717 32.139 

SA-R-.3 96.873 101.55 32.221 93.137 98.143 32.363 93.309 97.416 32.103 

SA-R-.5 95.359 101.14 32.183 92.126 97.998 32.315 92.808 96.946 32.055 

SA-R-.7 94.648 100.87 32.139 91.926 97.347 32.264 92.162 96.856 32.013 

SA-R-.9 94.328 100.63 32.088 91.854 97.869 32.230 92.566 96.565 31.966 

SA-R-1.1 97.780 102.09 32.441 93.860 98.858 32.564 94.243 98.056 32.319 

SA-R-1.3 95.420 101.22 32.405 92.869 98.416 32.535 92.730 96.735 32.287 

SA-R-1.5 95.818 100.99 32.372 92.197 98.360 32.501 92.536 97.295 32.247 

SA-R-1.7 94.276 100.37 32.340 91.223 97.676 32.481 92.595 97.448 32.226 

SA-R-1.9 94.092 100.07 32.312 91.419 96.768 32.451 92.331 97.046 32.190 

SA-R-2.1 94.653 100.33 31.937 91.556 97.282 32.067 92.890 96.851 31.810 

SA-R-2.3 93.038 99.796 31.923 90.895 97.057 32.047 91.924 96.291 31.787 

SA-R-2.5 93.044 100.27 31.917 91.028 96.470 32.044 91.569 97.104 31.783 

SA-R-2.7 93.470 100.09 31.897 90.875 97.250 32.015 91.593 96.872 31.781 

SA-R-2.9 94.067 100.86 31.878 90.978 96.519 32.012 91.948 96.803 31.751 

SA-R-3.1 93.389 101.72 32.306 91.750 96.864 32.436 92.204 96.222 32.173 

SA-R-3.3 93.200 100.51 32.290 91.056 96.703 32.439 91.572 96.222 32.170 

SA-R-3.5 93.098 100.06 32.284 90.703 96.446 32.419 91.480 96.211 32.160 

SA-R-3.7 92.739 99.343 32.285 90.869 97.427 32.422 91.724 96.016 32.167 

SA-R-3.9 93.327 100.56 32.283 90.870 96.470 32.413 91.781 97.416 32.152 

SA-H-.1 96.841 100.77 32.302 94.521 98.601 32.432 94.406 97.606 32.176 

SA-H-.3 96.219 101.17 32.246 92.509 98.046 32.384 93.053 96.930 32.122 

SA-H-.5 95.723 99.751 32.180 92.938 97.636 32.324 92.598 97.247 32.071 

SA-H-.7 94.748 101.01 32.120 91.826 97.387 32.270 93.020 97.490 31.999 

SA-H-.9 94.084 99.570 32.056 91.915 97.250 32.198 92.449 97.115 31.957 

SA-H-1.1 97.385 101.80 32.832 93.575 98.046 32.962 94.418 97.976 32.701 

SA-H-1.3 95.175 100.18 32.749 93.154 98.199 32.877 92.883 97.274 32.620 

SA-H-1.5 95.306 101.71 32.674 92.072 97.178 32.802 92.403 97.443 32.553 

SA-H-1.7 94.548 100.07 32.597 91.975 97.604 32.733 92.438 96.856 32.469 

SA-H-1.9 94.397 100.56 32.523 92.045 97.379 32.652 92.311 97.089 32.399 

SA-H-2.1 93.929 99.389 32.216 90.831 97.154 32.353 92.149 96.856 32.093 

SA-H-2.3 92.556 99.140 32.199 90.755 96.824 32.360 91.892 96.777 32.083 

SA-H-2.5 93.380 99.117 32.190 90.470 96.261 32.340 91.539 96.349 32.090 

SA-H-2.7 92.639 99.717 32.197 90.715 97.009 32.321 91.257 96.238 32.069 

SA-H-2.9 93.103 98.653 32.180 90.840 96.671 32.326 91.813 96.523 32.059 

SA-H-3.1 94.407 100.68 32.391 91.955 97.483 32.536 92.707 96.708 32.287 

SA-H-3.3 93.123 99.728 32.399 91.217 96.744 32.534 91.651 96.576 32.261 

SA-H-3.5 92.592 99.853 32.376 90.484 96.607 32.520 91.596 96.539 32.275 

SA-H-3.7 92.887 100.06 32.369 90.874 96.502 32.525 91.515 96.407 32.262 
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SA-H-3.9 92.793 98.721 32.384 90.698 96.720 32.518 91.692 96.217 32.242 

Table A.7 Results for 5x6x8-problem size with total flow time as the performance criterion 

 

                   5 x 6 x 8 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 0.095 100.00 100.00 0.079 100.00 100.00 0.097 

HIT-M 100.96 100.88 0.084 100.85 100.90 0.082 100.70 100.73 0.084 

CDS 96.821 98.698 0.837 96.638 98.326 0.839 97.781 98.915 0.835 

CDS-M-1 97.296 99.223 0.860 96.841 98.533 0.838 98.011 99.196 0.850 

CDS-M-2 95.741 97.505 1.414 95.489 96.942 1.618 95.978 97.290 1.689 

CDS-M-3 96.100 97.812 1.423 95.899 97.580 1.515 96.060 97.600 1.711 

NEH 92.549 99.978 2.940 92.816 99.644 2.944 93.836 100.37 2.956 

NEH-M-1 92.334 99.727 2.930 92.923 99.577 2.939 93.807 100.35 2.934 

          
TABU-R 94.136 99.311 398.81 93.137 97.829 383.68 93.229 98.437 324.41 

T-R-M-1 94.259 99.442 383.40 93.416 98.086 344.80 92.957 97.914 341.87 

T-R-M-2 95.199 100.60 349.36 93.838 99.287 351.74 93.014 98.100 340.23 

TABU-H 93.799 99.026 340.18 93.031 96.544 346.29 92.991 97.352 330.45 

T-H-M-1 93.402 98.293 334.13 93.072 96.685 353.95 92.487 97.493 326.11 

T-H-M-2 93.728 98.227 333.76 93.296 96.983 346.56 92.695 97.021 327.93 

          
SA-R-.1 96.856 101.26 35.495 95.926 100.15 35.475 94.433 98.533 35.458 

SA-R-.3 95.930 99.803 35.432 93.711 97.961 35.411 93.718 98.595 35.412 

SA-R-.5 95.733 100.27 35.395 94.869 99.892 35.356 93.121 98.179 35.347 

SA-R-.7 95.354 100.31 35.319 93.950 98.036 35.294 92..966 97.920 35.300 

SA-R-.9 94.940 100.10 35.255 93.338 98.077 35.226 93.021 97.358 35.222 

SA-R-1.1 96.790 100.56 35.607 95.360 99.884 35.586 93.702 98.190 35.577 

SA-R-1.3 96.030 100.14 35.580 94.897 100.08 35.554 93.155 97.763 35.539 

SA-R-1.5 96.299 100.56 35.557 94.140 98.608 35.512 92.810 97.363 35.514 

SA-R-1.7 94.526 99.136 35.509 93.536 98.500 35.494 93.039 98.195 35.470 

SA-R-1.9 94.661 99.103 35.473 93.272 98.376 35.442 92.952 98.010 35.431 

SA-R-2.1 94.062 99.070 35.058 93.074 98.492 35.031 92.845 97.622 35.030 

SA-R-2.3 93.413 98.063 35.048 92.341 97.505 35.011 92.091 97.240 35.023 

SA-R-2.5 93.645 99.004 35.029 92.408 96.983 35.002 91.955 97.510 34.997 

SA-R-2.7 93.590 98.764 35.029 92.487 98.028 35.001 92.282 97.155 34.988 

SA-R-2.9 94.111 99.519 35.016 93.197 97.787 34.970 92.556 97.217 34.978 

SA-R-3.1 93.584 98.227 35.390 92.506 97.132 35.353 92.426 96.947 35.343 

SA-R-3.3 93.177 98.906 35.388 92.302 98.351 35.365 91.712 97.015 35.343 

SA-R-3.5 93.575 99.333 35.378 92.739 97.671 35.344 92.134 96.992 35.346 

SA-R-3.7 93.485 99.114 35.394 92.614 98.052 35.352 92.221 96.998 35.358 

SA-R-3.9 94.320 98.961 35.377 93.074 98.276 35.369 92.382 96.947 35.352 

SA-H-.1 95.921 100.29 35.522 95.536 98.682 35.491 94.110 97.841 35.484 

SA-H-.3 95.474 99.934 35.470 94.511 99.644 35.442 92.771 97.751 35.432 

SA-H-.5 95.260 100.12 35.419 93.614 97.481 35.388 93.107 97.791 35.376 

SA-H-.7 95.768 100.29 35.359 93.688 98.011 35.328 92.779 97.526 35.309 

SA-H-.9 94.754 99.147 35.300 93.251 98.036 35.259 92.771 97.729 35.255 

SA-H-1.1 97.027 100.02 35.977 95.496 99.809 35.943 93.892 98.235 35.929 

SA-H-1.3 96.085 100.26 35.934 94.381 98.475 35.906 92.991 97.352 35.901 

SA-H-1.5 95.496 99.945 35.901 93.465 98.657 35.871 93.017 97.071 35.869 

SA-H-1.7 94.526 99.453 35.847 93.269 97.704 35.824 92.741 97.217 35.817 

SA-H-1.9 94.919 99.727 35.819 93.623 97.961 35.791 92.953 97.195 35.792 

SA-H-2.1 93.912 99.190 35.342 92.426 97.265 35.316 92.288 96.908 35.305 

SA-H-2.3 92.506 98.764 35.322 92.094 97.878 35.292 92.377 97.122 35.288 

SA-H-2.5 92.577 97.658 35.303 92.260 97.423 35.279 91.770 97.088 35.278 

SA-H-2.7 93.119 98.742 35.277 92.073 97.464 35.244 92.139 96.475 35.240 

SA-H-2.9 93.609 98.687 35.251 92.837 97.812 35.244 92.333 97.094 35.220 

SA-H-3.1 93.500 98.315 35.801 92.721 97.398 35.768 92.274 97.279 35.770 

SA-H-3.3 92.643 97.812 35.833 91.870 97.141 35.809 91.512 96.790 35.800 

SA-H-3.5 92.941 98.895 35.855 92.400 97.870 35.843 91.917 96.728 35.826 

SA-H-3.7 92.724 97.637 35.910 92.500 97.232 35.871 92.104 96.959 35.863 



 

 

134 

SA-H-3.9 93.694 99.004 35.931 92.870 97.920 35.901 92.367 97.257 35.919 

Table A.8 Results for 8x8x8-problem size with total flow time as the performance criterion 

 

                   8 X 8 X 8 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELF AMF CPU RELF AMF CPU RELF AMF CPU 

HITOMI 100.00 100.00 0.156 100.00 100.00 0.160 100.00 100.00 0.156 

HIT-M 101.28 100.82 0.159 100.67 100.62 0.161 100.60 100.56 0.162 

CDS 96.708 97.500 2.938 97.250 98.138 2.948 98.252 97.835 2.952 

CDS-M-1 97.021 98.100 2.965 97.256 98.369 2.968 98.743 98.009 2.972 

CDS-M-2 95.654 96.376 5.426 95.898 96.722 5.895 95.906 96.675 6.842 

CDS-M-3 96.054 96.771 5.301 95.931 97.096 5.615 95.899 95.897 6.876 

NEH 92.519 97.936 9.430 93.320 98.415 9.446 93.636 98.341 9.457 

NEH-M-1 92.785 98.324 9.446 93.368 98.538 9.468 93.500 98.239 9.475 

          
TABU-R 93.517 97.296 1859.056 92.736 98.220 1936.089 91.422 96.031 1838.963 

T-R-M-1 93.109 97.132 1857.241 92.431 97.512 1859.559 91.366 95.529 1773.783 

T-R-M-2 93.699 97.745 1849.782 93.032 97.825 1801.088 91.546 96.134 1729.010 

TABU-H 92.941 96.512 1724.829 92.177 97.286 1801.022 91.352 96.141 1750.284 

T-H-M-1 92.409 96.424 1740.744 91.679 96.814 1741.302 90.609 95.257 1769.955 

T-H-M-2 92.552 96.744 1777.433 91.806 96.701 1739.967 90.931 95.363 1739.421 

          
SA-R-.1 97.146 99.312 75.864 96.591 99.528 75.931 95.639 98.101 75.936 

SA-R-.3 96.455 99.571 75.791 95.841 99.179 75.873 94.366 97.092 75.880 

SA-R-.5 95.913 98.406 75.730 94.950 98.702 75.815 93.556 97.492 75.808 

SA-R-.7 95.675 98.876 75.672 95.193 98.779 75.736 93.150 96.781 75.745 

SA-R-.9 95.385 98.433 75.583 94.723 98.107 75.650 93.328 97.135 75.664 

SA-R-1.1 97.064 99.796 75.438 96.383 99.564 75.514 94.643 97.899 75.510 

SA-R-1.3 95.954 98.488 75.374 96.041 99.359 75.443 93.679 96.824 75.450 

SA-R-1.5 96.231 99.441 75.313 94.828 98.805 75.383 93.226 96.976 75.385 

SA-R-1.7 95.674 98.665 75.237 94.484 98.040 75.311 93.186 96.749 75.317 

SA-R-1.9 95.389 99.060 75.154 94.179 98.599 75.217 93.302 96.926 75.227 

SA-R-2.1 95.528 98.583 74.707 94.798 99.118 74.800 94.219 97.036 74.826 

SA-R-2.3 94.547 98.195 74.689 93.741 97.753 74.779 93.014 96.898 74.783 

SA-R-2.5 94.448 98.304 74.678 93.379 98.148 74.720 92.822 97.110 74.740 

SA-R-2.7 95.029 97.868 74.612 93.216 97.866 74.696 92.082 96.389 74.708 

SA-R-2.9 94.384 98.045 74.598 93.652 98.497 74.676 92.474 96.824 74.664 

SA-R-3.1 95.301 99.728 75.802 94.638 98.646 75.880 93.821 96.926 75.888 

SA-R-3.3 94.514 97.725 75.785 93.787 97.312 75.851 92.416 96.265 75.855 

SA-R-3.5 93.949 97.159 75.768 93.044 97.266 75.840 92.354 96.626 75.852 

SA-R-3.7 94.230 98.331 75.765 93.090 97.389 75.835 92.323 96.664 75.821 

SA-R-3.9 94.097 97.956 75.748 93.286 98.240 75.784 92.027 96.473 75.793 

SA-H-.1 98.014 99.326 75.626 96.369 98.564 75.701 95.394 97.704 75.700 

SA-H-.3 96.084 99.571 75.582 95.582 98.476 75.652 93.936 97.025 75.651 

SA-H-.5 96.391 98.890 75.528 94.884 98.641 75.610 93.566 96.502 75.615 

SA-H-.7 95.547 98.556 75.484 94.343 97.984 75.549 93.460 97.245 75.561 

SA-H-.9 95.192 98.542 75.432 94.296 98.122 75.499 93.352 96.707 75.498 

SA-H-1.1 97.965 99.373 75.702 96.502 99.066 75.788 95.323 98.037 75.770 

SA-H-1.3 97.205 99.428 75.651 95.128 98.553 75.704 93.995 97.390 75.720 

SA-H-1.5 95.305 98.065 75.588 94.735 98.805 75.648 93.644 97.322 75.651 

SA-H-1.7 95.322 98.392 75.508 94.368 98.107 75.571 93.282 97.195 75.591 

SA-H-1.9 95.264 98.426 75.449 94.129 98.179 75.468 93.203 96.707 75.528 

SA-H-2.1 94.847 98.154 74.551 94.224 97.030 74.619 93.474 96.516 74.632 

SA-H-2.3 94.372 97.343 74.544 93.492 97.584 74.604 93.536 97.170 74.609 

SA-H-2.5 94.088 97.902 74.504 93.415 97.389 74.576 92.507 96.183 74.584 

SA-H-2.7 93.926 97.793 74.506 92.836 97.199 74.567 92.543 96.611 74.579 

SA-H-2.9 93.938 97.868 74.495 93.137 97.840 74.576 92.726 96.350 74.441 

SA-H-3.1 95.040 97.793 75.901 94.431 98.676 75.969 93.772 96.657 75.992 

SA-H-3.3 93.748 97.112 75.866 93.671 97.938 75.928 92.743 96.894 75.942 

SA-H-3.5 93.925 98.290 75.828 93.050 97.994 75.911 92.335 95.695 75.918 

SA-H-3.7 93.537 97.779 75.811 93.098 97.553 75.909 92.247 95.554 75.874 
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SA-H-3.9 93.611 97.146 75.815 92.844 97.363 75.853 92.040 95.515 75.873 

 

 

APPENDIX B 

 

RESULTS WITH RESPECT TO MAKESPAN 

 

 Tables B.1 through B.8 shows the results of solving the experimental group 

scheduling problems using the heuristics under study, with respect to makespan, a 

table for each problem size. The table is divided into three parts vertically one for 

each S/R ratio. For each heuristic at each S/R, the makespan (RELM) is listed in the 

first column. Relative total flow time for the solution (AFM) is given in the second 

column and the third column exhibits the computational times (CPU) in seconds. 
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Table B.1 Results for 3x3x3-problem size with makespan as the performance criterion 

 

3 x 3 x 3 Problems 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 .009 100.00 100.00 .011 100.00 100.00 .009 

HIT-M 100.29 100.09 .007 100.44 100.77 .009 100.28 100.32 .009 

CDS 99.024 99.238 .038 99.908 99.459 .031 99.090 98.986 .031 

CDS-M-1 99.060 99.175 .031 99.679 99.395 .031 99.035 99.068 .029 

CDS-M-2 98.843 99.086 .022 99.519 99.364 .026 98.663 98.733 .048 

CDS-M-3 98.915 98.832 .024 99.336 99.276 .059 98.635 98.805 .042 

NEH 97.649 96.129 .040 99.473 97.228 .042 99.200 96.358 .037 

NEH-M-1 97.794 95.875 .038 99.473 97.295 .042 99.380 96.568 .038 

          
TABU-R 96.781 99.219 4.625 97.092 97.442 4.432 97.822 100.15 4.303 

T-R-M-1 96.817 98.248 4.489 97.161 98.954 4.383 98.028 99.908 4.410 

T-R-M-2 96.817 99.422 4.486 97.458 99.018 4.351 97.987 98.945 4.435 

TABU-H 96.275 98.477 4.388 96.863 98.524 4.143 97.753 98.612 4.214 

T-H-M-1 96.347 98.356 4.311 96.932 98.910 4.143 97.835 98.866 4.223 

T-H-M-2 96.347 98.344 4.335 96.932 98.866 4.174 97.794 98.641 4.249 

          
SA-R-.1 96.239 98.445 4.198 96.817 96.373 4.126 97.725 100.05 4.182 

SA-R-.3 96.166 97.303 4.185 96.817 98.791 4.125 97.725 99.295 4.171 

SA-R-.5 96.166 98.312 4.177 96.817 97.745 4.106 97.725 99.940 4.151 

SA-R-.7 96.166 98.140 4.159 96.817 97.948 4.093 97.725 99.602 4.132 

SA-R-.9 96.166 98.305 4.140 96.863 98.306 4.076 97.725 99.392 4.125 

SA-R-1.1 96.166 97.607 4.417 96.817 98.147 4.354 97.725 100.82 4.404 

SA-R-1.3 96.203 97.874 4.410 96.817 97.979 4.337 97.725 98.875 4.391 

SA-R-1.5 96.239 97.550 4.398 96.817 98.035 4.326 97.725 99.583 4.382 

SA-R-1.7 96.239 97.918 4.370 96.817 97.868 4.307 97.725 100.02 4.361 

SA-R-1.9 96.239 97.284 4.365 96.817 96.957 4.298 97.725 98.933 4.337 

SA-R-2.1 96.166 98.020 4.481 96.817 98.270 4.425 97.725 99.360 4.479 

SA-R-2.3 96.166 97.944 4.453 96.817 98.047 4.387 97.725 101.18 4.452 

SA-R-2.5 96.166 99.181 4.420 96.817 97.279 4.344 97.725 98.410 4.416 

SA-R-2.7 96.166 98.337 4.391 96.817 97.836 4.327 97.725 98.366 4.376 

SA-R-2.9 96.239 97.227 4.357 96.817 99.109 4.287 97.725 97.746 4.347 

SA-R-3.1 96.203 97.899 4.535 96.817 98.258 4.472 97.725 99.686 4.535 

SA-R-3.3 96.203 99.283 4.507 96.817 97.693 4.441 97.725 99.821 4.500 

SA-R-3.5 96.166 98.451 4.482 96.817 98.107 4.404 97.725 97.980 4.472 

SA-R-3.7 96.166 98.572 4.446 96.817 98.254 4.381 97.725 98.139 4.440 

SA-R-3.9 96.383 98.198 4.416 96.840 98.508 4.336 97.739 98.984 4.400 

SA-H-.1 96.166 97.531 4.197 96.817 98.226 4.128 97.725 99.151 4.184 

SA-H-.3 96.166 98.470 4.190 96.817 97.960 4.119 97.725 99.160 4.167 

SA-H-.5 96.166 97.982 4.175 96.817 97.383 4.114 97.725 99.030 4.162 

SA-H-.7 96.166 98.255 4.164 96.817 98.015 4.099 97.725 99.208 4.152 

SA-H-.9 96.166 98.325 4.153 96.817 98.015 4.081 97.725 99.225 4.128 

SA-H-1.1 96.166 97.861 4.381 96.817 97.661 4.310 97.725 98.670 4.365 

SA-H-1.3 96.166 97.779 4.365 96.817 97.932 4.293 97.725 99.078 4.354 

SA-H-1.5 96.166 98.388 4.363 96.817 98.143 4.281 97.725 99.126 4.343 

SA-H-1.7 96.166 97.880 4.347 96.817 97.244 4.273 97.725 98.880 4.323 

SA-H-1.9 96.275 98.432 4.322 96.840 98.011 4.253 97.725 98.861 4.312 

SA-H-2.1 96.166 98.445 4.453 96.817 97.283 4.411 97.725 99.013 4.466 

SA-H-2.3 96.203 97.696 4.429 96.817 97.944 4.374 97.725 98.231 4.435 

SA-H-2.5 96.203 97.645 4.410 96.817 98.333 4.347 97.725 98.192 4.403 

SA-H-2.7 96.275 97.956 4.375 96.817 97.486 4.315 97.725 98.678 4.369 

SA-H-2.9 96.275 97.633 4.347 96.817 97.876 4.274 97.725 98.366 4.345 

SA-H-3.1 96.166 98.001 4.477 96.817 97.928 4.419 97.725 99.749 4.485 

SA-H-3.3 96.166 98.490 4.460 96.817 98.019 4.385 97.725 99.377 4.453 

SA-H-3.5 96.166 98.210 4.422 96.817 98.536 4.350 97.725 98.226 4.416 

SA-H-3.7 96.166 98.179 4.390 96.817 98.011 4.325 97.725 98.533 4.390 

SA-H-3.9 96.203 97.271 4.361 96.840 99.089 4.292 97.725 99.616 4.341 
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Table B.2 Results for 3x4x5-problem size with makespan as the performance criterion 

 

                   3 x 4 x 5 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 .021 100.00 100.00 .020 100.00 100.00 .021 

HIT-M 101.51 100.53 .018 100.64 100.62 .018 100.42 100.03 .016 

CDS 98.774 98.310 .105 97.636 98.508 .093 98.784 99.159 .102 

CDS-M-1 98.851 98.345 .095 97.458 98.393 .096 98.761 99.127 .101 

CDS-M-2 97.727 97.803 .152 96.391 98.177 .150 97.804 98.279 .147 

CDS-M-3 97.753 98.334 .161 96.338 97.775 .154 97.759 98.109 .150 

NEH 97.702 94.672 .207 96.213 94.716 .208 97.838 96.275 .209 

NEH-M-1 97.676 94.969 .207 96.516 95.291 .208 97.827 96.475 .209 

          
TABU-R 95.480 96.769 19.549 94.133 96.554 18.668 96.228 98.214 17.949 

T-R-M-1 95.991 95.977 18.751 94.329 98.222 17.911 96.610 98.294 17.249 

T-R-M-2 96.246 95.894 19.067 94.649 96.251 17.599 96.689 98.493 17.119 

TABU-H 95.148 96.151 18.067 94.044 96.932 17.197 96.126 96.937 17.005 

T-H-M-1 95.301 96.469 17.146 93.973 96.484 16.979 96.092 97.379 16.430 

T-H-M-2 95.531 96.378 17.375 94.098 96.843 17.081 96.182 97.388 16.363 

          
SA-R-.1 95.378 96.365 8.833 93.849 96.781 8.803 96.047 97.579 8.749 

SA-R-.3 95.046 96.199 8.806 93.671 95.246 8.771 95.800 97.741 8.740 

SA-R-.5 95.148 96.175 8.775 93.920 96.127 8.749 95.946 98.339 8.708 

SA-R-.7 95.378 96.678 8.751 93.867 95.812 8.724 96.126 98.184 8.670 

SA-R-.9 96.476 97.056 8.720 94.329 95.705 8.694 96.205 98.263 8.646 

SA-R-1.1 95.072 96.488 9.265 93.796 95.729 9.240 95.867 96.742 9.195 

SA-R-1.3 95.225 96.638 9.244 93.653 96.105 9.223 95.856 96.899 9.174 

SA-R-1.5 95.072 95.819 9.230 93.671 96.065 9.202 95.946 97.270 9.155 

SA-R-1.7 95.608 96.180 9.200 93.778 96.526 9.171 95.946 98.055 9.128 

SA-R-1.9 96.399 97.029 9.185 94.400 96.685 9.147 96.239 97.361 9.110 

SA-R-2.1 95.174 95.674 9.231 93.724 96.233 9.204 95.935 96.986 9.165 

SA-R-2.3 95.429 96.879 9.190 93.813 96.022 9.166 95.867 97.487 9.131 

SA-R-2.5 95.020 95.963 9.151 93.689 95.250 9.116 95.935 97.969 9.074 

SA-R-2.7 95.123 96.895 9.117 93.760 95.877 9.073 95.901 98.061 9.038 

SA-R-2.9 95.965 96.724 9.074 94.329 96.704 9.041 96.081 98.834 9.006 

SA-R-3.1 95.250 95.802 9.338 93.724 96.317 9.314 95.901 97.601 9.271 

SA-R-3.3 95.174 96.124 9.281 93.796 95.492 9.261 95.878 97.403 9.214 

SA-R-3.5 95.072 95.532 9.241 93.564 95.951 9.215 95.811 97.797 9.175 

SA-R-3.7 95.199 96.220 9.200 93.636 95.453 9.168 95.845 97.801 9.130 

SA-R-3.9 95.914 96.874 9.171 94.222 96.383 9.132 96.205 97.729 9.087 

SA-H-.1 95.072 96.520 8.733 93.849 96.176 8.715 95.935 97.307 8.670 

SA-H-.3 95.046 95.371 8.725 93.564 95.564 8.696 95.901 97.351 8.655 

SA-H-.5 95.378 96.352 8.705 93.653 95.509 8.685 96.014 97.458 8.637 

SA-H-.7 95.046 96.252 8.683 93.796 95.406 8.665 96.104 97.742 8.619 

SA-H-.9 95.404 96.228 8.668 94.098 95.889 8.665 96.284 97.850 8.609 

SA-H-1.1 95.097 96.453 9.146 93.689 96.234 9.115 95.878 97.157 9.064 

SA-H-1.3 94.944 96.432 9.121 93.529 95.611 9.099 95.935 97.455 9.049 

SA-H-1.5 94.791 95.415 9.097 93.689 96.481 9.079 95.856 97.816 9.034 

SA-H-1.7 95.174 96.266 9.081 93.600 95.894 9.057 95.912 97.160 9.015 

SA-H-1.9 95.480 97.067 9.072 94.133 96.225 9.053 96.160 97.019 9.001 

SA-H-2.1 95.123 97.278 9.319 93.778 95.883 9.304 95.890 97.419 9.257 

SA-H-2.3 94.842 95.481 9.275 93.742 95.673 9.244 95.980 97.335 9.207 

SA-H-2.5 95.046 96.081 9.229 93.796 95.639 9.193 95.878 97.680 9.161 

SA-H-2.7 95.020 96.563 9.186 93.689 95.321 9.146 95.890 96.554 9.114 

SA-H-2.9 95.480 95.768 9.137 94.116 96.080 9.104 96.137 97.928 9.063 

SA-H-3.1 95.250 96.183 9.266 93.653 96.045 9.248 95.935 98.119 9.215 

SA-H-3.3 94.893 95.489 9.223 93.707 95.947 9.200 95.890 97.334 9.166 

SA-H-3.5 94.995 96.269 9.182 93.529 95.676 9.159 95.867 97.051 9.123 

SA-H-3.7 95.174 96.394 9.147 93.600 95.945 9.112 95.901 97.818 9.070 

SA-H-3.9 95.352 96.670 9.094 94.276 96.090 9.079 96.137 98.910 9.039 
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Table B.3 Results for 4x4x4-problem size with makespan as the performance criterion 

 

                   4  x 4  x 4  Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 .022 100.00 100.00 .020 100.00 100.00 .018 

HIT-M 100.84 100.65 .020 100.59 100.52 .020 100.20 100.07 .018 

CDS 98.691 99.183 .104 98.930 99.312 .110 98.082 100.04 .109 

CDS-M-1 99.042 100.07 .110 98.959 99.274 .110 98.045 99.947 .110 

CDS-M-2 97.078 98.904 .187 97.727 98.639 .187 96.404 99.744 .185 

CDS-M-3 97.218 99.505 .188 97.756 98.597 .204 96.432 99.463 .181 

NEH 98.130 96.385 .185 97.419 95.874 .194 97.099 97.495 .191 

NEH-M-1 97.779 96.305 .192 97.507 95.951 .192 97.238 97.700 .191 

          
TABU-R 95.208 98.038 20.363 95.557 97.779 19.356 93.809 98.397 19.406 

T-R-M-1 95.255 97.988 18.748 95.087 95.726 18.929 93.846 97.436 19.143 

T-R-M-2 95.722 99.546 19.418 95.117 95.638 18.935 93.976 96.093 19.021 

TABU-H 94.437 96.930 18.887 94.955 96.331 18.429 93.744 97.470 19.475 

T-H-M-1 93.922 96.868 19.228 94.545 95.465 18.292 93.577 96.983 19.154 

T-H-M-2 94.296 97.517 19.645 94.706 95.758 18.507 93.596 97.019 19.290 

          
SA-R-.1 94.951 98.476 9.467 94.427 96.064 9.562 93.698 97.040 9.522 

SA-R-.3 94.367 97.606 9.454 94.398 95.928 9.539 93.596 96.625 9.498 

SA-R-.5 94.437 97.774 9.438 94.383 96.242 9.506 93.633 97.446 9.484 

SA-R-.7 94.554 97.966 9.416 94.354 95.843 9.495 93.577 97.463 9.465 

SA-R-.9 94.764 97.534 9.386 94.853 96.528 9.486 93.707 97.592 9.446 

SA-R-1.1 94.507 97.567 9.973 94.515 95.440 10.07 93.642 97.087 10.03 

SA-R-1.3 94.390 97.745 9.939 94.281 95.252 10.04 93.577 96.805 10.01 

SA-R-1.5 94.367 96.870 9.916 94.325 95.294 10.01 93.633 96.459 9.977 

SA-R-1.7 94.250 97.421 9.897 94.383 96.409 9.994 93.615 97.025 9.959 

SA-R-1.9 94.764 97.995 9.879 94.603 96.719 9.959 93.679 98.773 9.927 

SA-R-2.1 94.460 97.457 10.034 94.413 95.865 10.119 93.615 97.208 10.110 

SA-R-2.3 94.296 98.291 9.989 94.354 96.236 10.075 93.577 97.638 10.045 

SA-R-2.5 94.507 98.147 9.942 94.369 95.426 10.025 93.550 97.029 10.000 

SA-R-2.7 94.624 98.942 9.909 94.339 96.040 9.985 93.577 97.599 9.951 

SA-R-2.9 94.857 98.228 9.856 94.589 96.175 9.937 93.652 96.877 9.903 

SA-R-3.1 94.437 98.918 10.114 94.427 95.560 10.201 93.587 97.620 10.197 

SA-R-3.3 94.367 98.183 10.068 94.222 96.134 10.142 93.596 97.115 10.128 

SA-R-3.5 94.156 96.962 10.014 94.237 95.869 10.099 93.568 96.628 10.075 

SA-R-3.7 94.250 98.123 9.972 94.222 95.707 10.048 93.587 96.642 10.028 

SA-R-3.9 94.694 98.978 9.931 94.530 95.396 10.012 93.754 97.911 9.977 

SA-H-.1 94.811 98.224 9.533 94.559 96.102 9.616 93.661 97.072 9.591 

SA-H-.3 94.530 98.284 9.518 94.413 95.181 9.599 93.661 96.793 9.572 

SA-H-.5 94.461 97.457 9.483 94.354 95.904 9.580 93.587 97.174 9.548 

SA-H-.7 94.437 97.377 9.464 94.457 95.623 9.554 93.615 97.279 9.522 

SA-H-.9 94.577 97.712 9.452 94.574 96.039 9.527 93.624 97.171 9.502 

SA-H-1.1 94.390 97.312 9.855 94.339 95.849 9.949 93.670 96.708 9.914 

SA-H-1.3 94.413 97.269 9.833 94.310 95.628 9.924 93.587 97.110 9.883 

SA-H-1.5 94.156 96.791 9.815 94.295 95.941 9.892 93.587 96.887 9.866 

SA-H-1.7 94.437 98.000 9.793 94.266 95.587 9.885 93.643 97.377 9.854 

SA-H-1.9 94.507 97.887 9.764 94.574 95.764 9.855 93.716 97.062 9.829 

SA-H-2.1 94.624 98.673 10.051 94.339 96.010 10.135 93.605 97.031 10.133 

SA-H-2.3 94.647 98.671 10.000 94.413 95.745 10.084 93.605 96.044 10.062 

SA-H-2.5 94.390 98.096 9.954 94.281 95.467 10.033 93.568 97.747 10.000 

SA-H-2.7 94.063 97.933 9.904 94.281 96.239 9.981 93.540 96.383 9.944 

SA-H-2.9 94.530 98.005 9.855 94.530 95.680 9.925 93.670 97.069 9.899 

SA-H-3.1 94.717 98.327 10.004 94.369 96.073 10.085 93.615 97.752 10.080 

SA-H-3.3 94.296 97.555 9.950 94.251 96.280 10.024 93.540 97.509 10.001 

SA-H-3.5 94.156 97.889 9.897 94.207 95.992 9.973 93.559 97.564 9.956 

SA-H-3.7 94.413 98.707 9.840 94.295 95.660 9.927 93.605 97.028 9.882 

SA-H-3.9 94.507 97.286 9.790 94.515 95.610 9.859 93.642 96.641 9.836 
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Table B.4 Results for 6x5x4-problem size with makespan as the performance criterion 

 

                   6 x 5 x 4  Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 .035 100.00 100.00 .035 100.00 100.00 .033 

HIT-M 100.82 100.44 .036 100.78 100.52 .037 100.07 100.00 .035 

CDS 97.647 97.049 .304 98.779 98.919 .297 98.489 98.918 .316 

CDS-M-1 97.737 96.957 .306 98.839 98.912 .309 98.543 98.843 .309 

CDS-M-2 96.343 96.923 .599 96.568 97.866 .619 97.032 97.850 .548 

CDS-M-3 96.164 96.541 .576 96.467 97.797 .624 96.882 97.709 .575 

NEH 96.179 93.956 .491 97.497 96.513 .489 96.930 96.661 .486 

NEH-M-1 95.834 93.939 .492 97.628 96.543 .488 97.038 96.870 .488 

          
TABU-R 93.496 96.199 83.041 94.115 96.603 81.072 93.703 96.981 81.454 

T-R-M-1 92.492 94.174 85.907 93.398 96.719 81.052 93.475 95.920 79.883 

T-R-M-2 93.301 95.836 82.987 94.216 96.263 82.137 93.889 96.661 81.283 

TABU-H 92.687 95.249 82.753 93.822 97.078 81.589 93.601 95.773 81.828 

T-H-M-1 92.207 94.641 80.618 93.519 96.313 81.215 93.547 95.122 81.747 

T-H-M-2 92.597 95.026 81.632 93.681 96.375 79.650 93.679 95.784 81.751 

          
SA-R-.1 94.455 96.459 17.590 94.801 97.391 17.629 94.909 97.048 17.634 

SA-R-.3 93.871 96.409 17.564 94.690 97.267 17.619 94.279 97.142 17.625 

SA-R-.5 93.526 95.192 17.527 94.317 96.881 17.582 93.955 96.286 17.581 

SA-R-.7 93.661 95.971 17.500 94.266 97.031 17.549 93.751 96.397 17.549 

SA-R-.9 93.736 95.428 17.463 94.155 97.092 17.512 93.751 96.260 17.522 

SA-R-1.1 94.051 94.773 18.528 94.468 97.553 18.566 94.633 97.817 18.566 

SA-R-1.3 93.376 94.736 18.486 94.650 98.141 18.537 94.111 97.491 18.537 

SA-R-1.5 93.646 96.048 18.446 94.095 96.653 18.509 93.991 96.584 18.495 

SA-R-1.7 93.361 95.105 18.405 94.014 96.951 18.466 93.925 96.412 18.470 

SA-R-1.9 93.466 95.850 18.381 94.064 96.267 18.425 93.781 95.995 18.431 

SA-R-2.1 93.676 95.581 18.444 94.842 97.597 18.480 94.477 96.832 18.498 

SA-R-2.3 93.271 95.750 18.390 93.751 95.553 18.416 93.649 96.150 18.424 

SA-R-2.5 93.182 95.469 18.323 94.064 96.274 18.353 93.661 96.595 18.351 

SA-R-2.7 93.122 95.536 18.266 93.903 96.301 18.308 93.541 95.929 18.290 

SA-R-2.9 93.271 95.625 18.228 94.226 96.982 18.251 93.553 95.982 18.237 

SA-R-3.1 93.991 96.102 18.539 94.710 96.756 18.581 94.579 97.234 18.616 

SA-R-3.3 93.197 95.351 18.460 94.165 96.842 18.508 93.583 96.689 18.506 

SA-R-3.5 92.807 94.736 18.402 93.883 96.601 18.433 93.385 96.921 18.437 

SA-R-3.7 93.226 95.257 18.351 93.741 97.161 18.382 93.577 97.128 18.387 

SA-R-3.9 93.376 95.103 18.293 93.953 96.886 18.321 93.547 96.138 18.309 

SA-H-.1 93.826 95.701 17.505 94.650 97.591 17.544 94.441 96.529 17.540 

SA-H-.3 93.646 95.756 17.482 94.438 96.239 17.527 93.871 96.784 17.534 

SA-H-.5 93.691 95.814 17.459 94.246 96.476 17.510 93.601 96.213 17.506 

SA-H-.7 93.212 94.865 17.432 94.135 97.150 17.478 93.739 95.631 17.483 

SA-H-.9 93.706 95.647 17.411 94.044 96.864 17.458 94.027 96.450 17.460 

SA-H-1.1 93.631 95.063 18.311 94.347 96.927 18.368 94.207 95.482 18.361 

SA-H-1.3 93.361 96.118 18.269 94.246 96.694 18.315 94.099 96.907 18.318 

SA-H-1.5 93.481 96.181 18.219 94.105 96.781 18.257 93.913 95.985 18.274 

SA-H-1.7 93.451 95.105 18.175 94.115 96.047 18.230 93.733 96.595 18.216 

SA-H-1.9 93.226 95.388 18.117 94.195 97.783 18.163 93.673 96.656 18.167 

SA-H-2.1 94.111 95.494 18.445 94.508 96.939 18.482 94.303 96.668 18.488 

SA-H-2.3 93.107 95.484 18.360 93.943 97.272 18.407 93.409 96.386 18.412 

SA-H-2.5 93.017 94.714 18.291 93.701 96.294 18.337 93.523 97.210 18.336 

SA-H-2.7 92.942 95.202 18.230 93.782 97.260 18.262 93.553 95.947 18.250 

SA-H-2.9 93.226 95.712 18.167 93.994 96.901 18.202 93.625 95.803 18.180 

SA-H-3.1 93.391 95.084 18.438 94.498 96.791 18.478 94.423 97.225 18.494 

SA-H-3.3 93.137 95.250 18.396 93.912 96.573 18.393 93.553 95.237 18.412 

SA-H-3.5 93.316 94.961 18.297 93.651 96.471 18.333 93.529 95.698 18.337 

SA-H-3.7 93.212 95.078 18.241 92.812 96.318 18.266 93.427 95.435 18.261 

SA-H-3.9 93.301 95.843 18.184 93.923 96.726 18.208 93.679 96.487 18.192 
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Table B.5 Results for 5x5x5-problem size with makespan as the performance criterion 

 

                   5 x 5 x 5 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 .036 100.00 100.00 .042 100.00 100.00 .035 

HIT-M 100.95 100.70 .038 100.68 100.62 .037 100.27 100.18 .036 

CDS 96.986 98.248 .299 98.776 99.036 .299 98.497 98.487 .294 

CDS-M-1 97.128 98.327 .296 98.884 99.307 .300 98.511 98.597 .294 

CDS-M-2 96.023 97.841 .474 97.069 98.684 .580 96.425 97.876 .572 

CDS-M-3 95.818 97.577 .531 97.166 98.563 .571 96.398 98.218 .575 

NEH 95.249 93.829 .642 97.660 95.872 .642 97.555 97.307 .647 

NEH-M-1 95.376 94.107 .638 98.100 96.244 .641 97.534 97.474 .647 

          
TABU-R 94.097 96.460 83.944 95.094 97.906 77.365 94.437 96.383 76.502 

T-R-M-1 93.718 95.425 82.356 94.600 96.193 78.857 94.049 96.604 76.135 

T-R-M-2 93.924 95.474 81.985 95.416 97.065 79.559 94.493 96.803 76.450 

TABU-H 93.939 96.279 79.900 94.418 97.191 77.158 94.195 96.944 76.328 

T-H-M-1 93.040 95.063 78.204 94.063 96.269 76.877 93.703 96.005 77.050 

T-H-M-2 93.324 95.265 79.247 94.375 96.495 78.182 94.015 96.009 78.077 

          
SA-R-.1 94.460 97.024 18.009 95.137 97.070 18.097 94.929 96.846 18.040 

SA-R-.3 93.939 96.291 17.995 94.836 96.262 18.071 94.105 96.845 18.022 

SA-R-.5 93.939 95.828 17.972 94.600 96.071 18.052 94.139 96.150 18.012 

SA-R-.7 93.892 95.782 17.941 94.332 96.576 18.041 94.077 97.240 17.978 

SA-R-.9 93.876 96.536 17.918 94.643 98.086 18.017 94.091 97.183 17.959 

SA-R-1.1 94.287 96.199 18.896 94.869 97.653 18.982 94.590 97.760 18.938 

SA-R-1.3 93.734 96.263 18.858 94.353 97.271 18.961 94.015 96.754 18.917 

SA-R-1.5 93.624 96.565 18.833 94.289 96.819 18.933 94.077 96.666 18.874 

SA-R-1.7 93.640 96.935 18.790 94.418 97.041 18.881 94.008 96.428 18.835 

SA-R-1.9 93.955 96.100 18.746 94.632 97.141 18.829 94.306 96.871 18.787 

SA-R-2.1 94.271 96.289 18.927 94.708 96.439 19.036 94.077 97.112 18.977 

SA-R-2.3 93.829 95.811 18.853 94.375 96.802 18.946 93.890 96.504 18.886 

SA-R-2.5 93.813 96.114 18.781 94.128 96.168 18.874 93.682 96.264 18.813 

SA-R-2.7 93.513 95.696 18.718 94.063 96.615 18.799 93.897 96.225 18.739 

SA-R-2.9 93.876 96.126 18.662 94.482 97.360 18.754 93.959 96.858 19.676 

SA-R-3.1 94.066 96.222 18.035 94.804 96.859 19.127 94.437 97.492 19.075 

SA-R-3.3 93.845 95.968 18.970 93.988 96.238 19.056 93.758 96.466 18.999 

SA-R-3.5 93.466 95.797 18.902 94.181 96.338 18.981 93.696 96.748 18.920 

SA-R-3.7 93.419 95.965 18.834 93.999 96.540 18.920 93.786 96.422 18.847 

SA-R-3.9 93.797 96.725 18.778 94.246 96.810 18.856 93.897 96.642 18.785 

SA-H-.1 94.492 97.231 17.915 95.330 97.191 18.005 94.590 97.748 17.965 

SA-H-.3 94.113 96.365 17.911 94.632 96.763 17.987 94.077 96.788 17.949 

SA-H-.5 93.829 95.561 17.888 94.514 97.824 17.980 94.216 96.972 17.935 

SA-H-.7 93.513 95.958 17.866 94.278 96.610 17.964 94.063 96.749 17.917 

SA-H-.9 93.734 96.045 17.850 94.461 97.143 17.956 94.264 96.525 17.889 

SA-H-1.1 94.350 96.589 18.659 94.729 97.701 18.755 94.548 97.547 18.714 

SA-H-1.3 93.797 96.323 18.651 94.546 96.950 18.745 94.001 96.517 18.693 

SA-H-1.5 93.450 95.886 18.631 94.525 97.363 18.725 94.077 96.400 18.659 

SA-H-1.7 93.718 96.187 18.613 94.504 96.993 18.676 93.911 96.404 18.645 

SA-H-1.9 93.640 95.776 18.568 94.504 96.714 18.661 94.167 96.641 18.621 

SA-H-2.1 93.908 96.313 18.971 94.428 96.560 19.077 94.229 96.257 19.022 

SA-H-2.3 93.482 95.642 18.893 94.310 96.786 18.978 93.800 96.713 18.926 

SA-H-2.5 93.734 96.199 18.812 94.149 96.563 18.889 93.841 97.101 18.839 

SA-H-2.7 93.592 96.488 18.734 94.203 96.853 18.821 94.035 96.532 18.758 

SA-H-2.9 93.750 95.606 18.667 94.310 96.773 18.733 93.987 97.268 18.673 

SA-H-3.1 94.003 96.146 18.901 94.622 97.116 18.993 94.091 96.759 18.944 

SA-H-3.3 93.245 95.479 18.818 94.063 96.410 18.902 93.869 96.855 18.859 

SA-H-3.5 93.482 95.879 18.757 94.031 96.201 18.834 93.724 96.333 18.783 

SA-H-3.7 93.576 96.013 18.694 94.085 96.908 18.770 93.876 95.909 18.707 

SA-H-3.9 93.592 95.616 18.624 94.096 96.097 18.697 94.021 96.834 18.637 
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Table B.6 Results for 6x6x6-problem size with makespan as the performance criterion 

 

                   6 x 6 x 6 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 0.064 100.00 100.00 0.063 100.00 100.00 0.066 

HIT-M 101.21 101.31 0.065 100.42 100.30 0.066 100.38 100.37 0.066 

CDS 97.962 98.740 0.691 97.065 97.582 0.698 98.478 99.130 0.696 

CDS-M-1 98.585 99.403 0.704 97.178 97.588 0.710 98.605 99.273 0.703 

CDS-M-2 96.389 97.897 1.296 95.457 96.732 1.371 96.629 98.935 1.411 

CDS-M-3 97.068 98.574 1.276 95.714 97.110 1.358 96.534 99.142 1.539 

NEH 96.943 94.979 1.803 96.631 95.229 1.816 97.052 95.990 1.796 

NEH-M-1 96.683 94.763 1.787 96.720 95.287 1.808 97.200 96.230 1.785 

          
TABU-R 95.381 98.407 295.819 93.777 95.579 275.953 93.939 96.790 268.786 

T-R-M-1 94.883 96.838 272.629 93.214 95.075 261.804 93.427 96.278 257.656 

T-R-M-2 95.517 97.868 273.168 93.640 95.334 264.150 93.939 97.006 261.153 

TABU-H 94.634 96.360 264.136 93.117 95.091 266.147 93.575 96.109 260.962 

T-H-M-1 93.558 96.164 260.484 92.394 94.135 267.978 93.131 95.832 259.234 

T-H-M-2 93.955 96.069 264.631 92.683 94.674 267.685 93.432 96.061 264.175 

          
SA-R-.1 97.181 98.684 30.932 94.516 95.916 31.044 95.060 97.218 30.793 

SA-R-.3 96.173 98.232 30.878 94.026 95.261 31.005 94.272 97.610 30.757 

SA-R-.5 96.185 97.656 30.843 93.881 95.205 30.965 94.061 96.662 30.726 

SA-R-.7 95.958 98.533 30.800 93.656 96.174 30.921 94.056 96.521 30.673 

SA-R-.9 95.766 98.710 30.762 93.929 95.669 30.878 94.262 96.836 30.631 

SA-R-1.1 96.841 99.691 32.350 94.742 96.294 32.458 95.075 97.883 32.199 

SA-R-1.3 96.004 98.745 32.294 94.066 95.996 32.423 94.114 96.739 32.166 

SA-R-1.5 95.834 98.314 32.257 93.769 95.243 32.376 93.987 97.346 32.109 

SA-R-1.7 95.992 99.178 32.204 93.367 95.067 32.348 94.019 96.145 32.098 

SA-R-1.9 95.947 98.562 32.174 93.921 96.262 32.283 93.918 96.865 32.030 

SA-R-2.1 97.181 99.683 32.118 94.468 96.200 32.266 94.684 96.970 31.984 

SA-R-2.3 95.641 98.095 32.001 93.849 96.264 32.142 94.019 97.124 31.864 

SA-R-2.5 95.766 98.661 31.915 93.415 96.050 32.039 93.670 97.112 31.757 

SA-R-2.7 95.472 97.870 31.827 93.351 94.753 31.944 93.453 96.355 31.661 

SA-R-2.9 95.755 98.565 31.754 93.511 95.571 31.879 93.728 95.965 31.591 

SA-R-3.1 96.524 97.912 32.688 94.106 96.533 32.816 94.431 97.416 32.534 

SA-R-3.3 95.800 98.251 32.578 93.600 95.797 32.706 93.670 96.804 32.416 

SA-R-3.5 95.415 97.917 32.491 93.375 95.662 32.615 93.702 96.839 32.326 

SA-R-3.7 95.223 97.641 32.425 93.262 95.430 32.538 93.606 97.688 32.249 

SA-R-3.9 95.800 97.774 32.351 93.616 95.678 32.467 93.797 96.679 32.177 

SA-H-.1 96.151 97.961 30.809 94.766 96.001 30.937 94.906 97.193 30.689 

SA-H-.3 95.947 97.745 30.781 93.986 95.625 30.891 94.008 97.086 30.658 

SA-H-.5 96.015 98.115 30.738 93.825 95.075 30.863 94.209 97.218 30.622 

SA-H-.7 95.732 98.262 30.696 93.849 95.833 30.827 93.960 96.878 30.579 

SA-H-.9 95.653 97.465 30.655 93.616 96.222 30.784 94.008 97.467 30.537 

SA-H-1.1 96.389 98.851 32.371 94.645 96.468 32.496 94.774 96.257 32.225 

SA-H-1.3 95.913 98.290 32.291 93.753 95.722 32.412 93.955 96.757 32.154 

SA-H-1.5 95.517 98.001 32.191 93.560 95.627 32.336 93.828 97.007 32.073 

SA-H-1.7 95.596 97.984 32.110 93.415 95.455 32.247 94.024 96.872 31.983 

SA-H-1.9 95.517 98.137 32.023 93.544 95.518 32.170 93.675 96.829 31.900 

SA-H-2.1 96.106 98.117 32.304 94.155 95.846 32.440 94.219 97.567 32.147 

SA-H-2.3 95.562 97.214 32.194 93.407 94.605 32.327 93.538 96.615 32.048 

SA-H-2.5 95.121 98.113 32.139 93.238 95.705 32.262 93.517 97.106 31.973 

SA-H-2.7 95.336 97.499 32.072 93.278 95.286 32.188 93.649 97.125 31.905 

SA-H-2.9 95.426 97.952 32.030 93.415 95.285 32.137 93.760 96.700 31.845 

SA-H-3.1 95.789 98.481 32.431 94.235 95.372 32.572 94.077 98.163 32.303 

SA-H-3.3 95.381 97.515 32.334 93.576 95.641 32.458 93.696 96.142 32.175 

SA-H-3.5 95.234 98.467 32.272 93.342 95.236 32.383 93.532 96.426 32.097 

SA-H-3.7 95.415 98.782 32.193 93.310 95.911 32.317 93.416 96.418 32.023 

SA-H-3.9 95.324 97.665 32.136 93.190 95.509 32.256 93.591 97.629 31.961 
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Table B.7 Results for 5x6x8 problem size with makespan as the performance criterion 

 

                   5 x 6 x 8 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 0.095 100.00 100.00 0.079 100.00 100.00 0.097 

HIT-M 100.88 100.96 0.084 100.90 100.85 0.082 100.73 100.70 0.084 

CDS 97.275 97.556 0.786 96.934 97.513 0.781 97.656 98.343 0.783 

CDS-M-1 97.582 98.139 0.808 97.331 97.781 0.785 97.898 98.577 0.792 

CDS-M-2 95.875 97.021 1.422 95.550 96.840 1.416 96.132 97.419 1.418 

CDS-M-3 96.094 97.456 1.483 95.533 97.235 1.559 96.177 97.479 1.363 

NEH 95.404 93.370 2.898 95.889 93.975 2.922 96.441 95.463 2.906 

NEH-M-1 95.142 93.136 2.890 95.815 93.919 2.891 96.329 95.511 2.882 

          
TABU-R 95.361 97.692 367.996 94.638 96.502 348.300 94.131 96.635 330.856 

T-R-M-1 94.989 96.551 347.243 93.900 96.084 339.412 93.771 96.211 323.978 

T-R-M-2 95.787 97.829 345.916 95.102 96.887 334.682 94.614 97.243 329.652 

TABU-H 94.737 96.663 333.404 94.091 96.355 332.061 93.816 97.161 313.892 

T-H-M-1 93.654 95.855 328.654 93.237 95.196 345.419 93.164 96.220 317.175 

T-H-M-2 94.168 96.449 339.598 93.453 95.378 349.074 93.378 96.169 319.309 

          
SA-R-.1 96.389 98.932 33.844 95.011 97.180 33.825 94.671 97.346 33.806 

SA-R-.3 95.941 98.340 33.835 94.572 96.871 33.803 94.316 96.812 33.792 

SA-R-.5 95.744 98.094 33.801 94.547 96.377 33.771 94.002 96.791 33.769 

SA-R-.7 95.623 97.663 33.783 94.538 96.179 33.746 94.142 96.963 33.724 

SA-R-.9 95.722 98.473 33.751 94.837 96.966 33.714 94.373 97.420 33.718 

SA-R-1.1 96.225 98.281 35.547 95.044 97.281 35.515 94.446 97.287 35.507 

SA-R-1.3 95.689 98.016 35.495 94.613 96.759 35.470 94.142 96.608 35.447 

SA-R-1.5 95.339 97.166 35.436 94.049 96.180 35.408 93.827 96.856 35.391 

SA-R-1.7 95.372 97.955 35.367 94.538 97.283 35.362 94.018 96.866 35.336 

SA-R-1.9 95.930 97.962 35.313 94.787 96.490 35.275 94.137 97.727 35.260 

SA-R-2.1 96.061 99.265 35.236 94.729 96.360 35.169 93.962 97.299 35.180 

SA-R-2.3 95.415 98.158 35.100 93.991 96.086 35.032 93.912 96.832 35.015 

SA-R-2.5 95.196 98.673 34.985 94.066 95.776 34.932 93.333 96.473 34.906 

SA-R-2.7 95.207 97.695 34.904 93.991 95.740 34.862 93.597 96.827 34.813 

SA-R-2.9 95.941 98.758 34.830 94.273 96.247 34.762 93.923 97.000 34.736 

SA-R-3.1 96.028 98.267 35.634 94.986 97.111 35.592 94.159 96.512 35.592 

SA-R-3.3 95.251 97.929 35.514 93.967 96.170 35.460 93.591 96.467 35.443 

SA-R-3.5 95.404 97.867 35.418 93.743 95.901 35.368 93.619 96.702 35.345 

SA-R-3.7 95.207 97.451 35.345 94.132 96.239 35.272 93.810 96.682 35.256 

SA-R-3.9 95.415 97.701 35.266 94.298 96.285 35.205 93.917 97.595 35.164 

SA-H-.1 96.061 98.389 33.782 95.077 96.318 33.744 94.873 97.002 33.735 

SA-H-.3 95.503 97.971 33.750 94.447 96.671 33.722 94.249 96.534 33.704 

SA-H-.5 95.437 98.130 33.722 94.331 96.172 33.691 93.945 97.047 33.675 

SA-H-.7 95.054 96.982 33.692 94.298 95.827 33.665 94.047 96.798 33.651 

SA-H-.9 95.120 98.179 33.656 94.257 95.517 33.630 93.850 96.921 33.613 

SA-H-1.1 95.076 97.150 35.564 94.688 97.091 35.532 94.198 96.981 35.517 

SA-H-1.3 95.339 98.048 35.465 94.281 96.727 35.429 94.086 97.029 35.412 

SA-H-1.5 95.251 97.604 35.641 94.174 96.564 35.330 93.844 96.767 35.319 

SA-H-1.7 95.229 97.504 35.262 94.124 96.448 35.222 93.810 96.977 35.215 

SA-H-1.9 94.890 96.988 35.166 94.049 96.299 35.133 93.760 96.785 35.126 

SA-H-2.1 95.393 97.915 35.486 94.422 96.199 35.432 94.058 96.802 35.437 

SA-H-2.3 95.306 97.452 35.385 94.124 96.297 35.337 93.726 96.439 35.322 

SA-H-2.5 95.098 97.747 35.308 93.892 95.841 35.254 93.636 96.830 35.218 

SA-H-2.7 95.021 98.058 35.230 93.967 96.440 35.182 93.602 96.628 35.145 

SA-H-2.9 94.967 97.207 35.187 94.107 96.039 35.132 93.653 96.917 35.086 

SA-H-3.1 95.733 97.643 35.564 94.588 96.062 35.524 94.052 96.696 35.507 

SA-H-3.3 95.196 97.908 35.397 94.049 96.056 35.349 93.524 96.476 35.337 

SA-H-3.5 94.901 97.635 35.275 93.801 95.998 35.219 93.580 96.244 35.185 

SA-H-3.7 94.945 98.452 35.152 93.884 95.964 35.098 93.496 96.069 35.057 

SA-H-3.9 95.054 97.698 35.051 94.025 96.620 34.973 93.653 96.802 34.954 
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Table B.8 Results for 8x8x8-problem size with makespan as the performance criterion 

 

                   8 x 8 x 8 Problems 

 

Heuristic 

S/R = 2 S/R = 5 S/R = 10 

RELM AFM CPU RELM AFM CPU RELM AFM CPU 

HITOMI 100.00 100.00 .165 100.00 100.00 .159 100.00 100.00 .152 

HIT-M 100.82 101.28 .159 100.62 100.67 .161 100.56 100.60 .162 

CDS 95.580 98.103 2.731 97.209 98.026 2.730 96.714 98.578 2.739 

CDS-M-1 96.458 97.948 2.764 97.548 98.323 2.772 96.767 98.718 2.765 

CDS-M-2 94.680 97.256 5.795 95.762 97.704 5.739 94.684 98.078 5.922 

CDS-M-3 94.932 97.383 5.223 95.675 98.121 6.406 94.914 98.081 5.487 

NEH 94.932 94.779 9.295 95.650 94.864 9.301 95.278 95.138 9.291 

NEH-M-1 94.857 94.786 9.281 95.880 95.117 9.279 95.342 95.246 9.273 

          
TABU-R 93.903 93.903 1740.430 93.243 96.243 1748.639 91.748 95.973 1698.847 

T-R-M-1 92.888 96.344 1789.194 92.848 95.654 1754.686 91.451 95.228 1718.279 

T-R-M-2 93.822 97.531 1748.662 93.320 96.785 1784.515 92.045 95.814 1733.074 

TABU-H 92.827 96.567 1720.709 92.684 95.734 1718.779 91.599 94.802 1718.170 

T-H-M-1 92.030 95.623 1753.431 91.915 94.888 1715.076 91.054 94.821 1703.673 

T-H-M-2 92.425 95.907 1725.521 92.294 95.403 1740.152 91.242 94.951 1714.923 

          
SA-R-.1 96.941 98.961 71.551 96.399 98.518 71.602 95.193 97.911 71.598 

SA-R-.3 95.811 98.441 71.496 95.372 97.725 71.551 93.930 97.253 71.551 

SA-R-.5 95.525 98.248 71.437 95.280 98.213 71.511 93.828 97.299 71.497 

SA-R-.7 95.150 98.653 71.383 94.942 98.179 71.436 93.375 96.847 71.444 

SA-R-.9 95.450 98.660 71.309 95.024 97.253 71.375 93.446 97.360 71.373 

SA-R-1.1 95.899 99.147 74.565 96.137 98.315 74.624 95.370 96.961 74.623 

SA-R-1.3 95.109 98.568 74.532 95.347 97.934 74.589 93.881 97.700 74.586 

SA-R-1.5 95.273 98.791 74.473 94.926 97.460 74.540 93.531 96.724 74.538 

SA-R-1.7 95.123 98.312 74.435 94.967 97.800 74.488 93.325 96.537 74.482 

SA-R-1.9 95.252 97.837 74.377 94.777 98.149 74.423 93.032 96.895 74.435 

SA-R-2.1 96.158 99.827 75.135 95.993 98.909 75.164 94.984 97.442 75.159 

SA-R-2.3 95.116 98.722 74.897 94.721 98.112 74.915 93.460 96.757 74.866 

SA-R-2.5 94.762 98.447 94.762 94.146 97.408 74.702 92.866 97.039 74.641 

SA-R-2.7 94.850 98.475 74.515 94.562 97.274 74.530 92.897 97.334 74.458 

SA-R-2.9 94.728 98.563 74.340 94.552 96.782 74.361 92.837 97.196 74.317 

SA-R-3.1 95.988 98.968 76.127 96.091 98.799 76.144 94.602 97.521 76.157 

SA-R-3.3 95.102 98.382 76.004 94.911 97.157 76.022 93.446 96.879 75.982 

SA-R-3.5 94.762 97.831 75.910 94.593 97.692 75.942 92.862 96.177 75.893 

SA-R-3.7 94.857 98.289 75.873 94.259 97.837 75.872 92.724 96.160 75.843 

SA-R-3.9 94.925 97.643 75.822 94.403 97.295 75.831 92.851 96.198 75.784 

SA-H-.1 95.838 98.783 72.156 95.937 98.288 72.224 94.708 96.971 72.216 

SA-H-.3 95.238 98.813 72.120 95.162 97.519 72.187 93.898 97.052 72.198 

SA-H-.5 95.068 98.217 72.073 94.654 97.597 72.138 93.424 97.036 72.144 

SA-H-.7 94.986 97.986 72.029 94.536 96.588 72.097 93.103 97.262 72.100 

SA-H-.9 94.898 98.018 71.991 94.685 97.266 72.058 93.156 97.409 72.045 

SA-H-1.1 95.879 98.186 74.967 95.650 97.915 75.045 94.652 97.900 75.032 

SA-H-1.3 95.518 98.932 74.879 95.003 97.237 74.942 93.615 97.066 74.951 

SA-H-1.5 95.252 99.140 74.801 94.649 97.242 74.851 93.442 96.107 74.864 

SA-H-1.7 94.939 98.348 74.710 94.444 96.775 74.759 93.035 96.430 74.758 

SA-H-1.9 94.993 98.604 74.598 94.423 97.342 74.681 93.035 96.347 74.679 

SA-H-2.1 95.593 98.687 75.068 95.367 98.007 75.103 94.496 97.315 75.073 

SA-H-2.3 94.898 98.520 74.848 94.577 97.691 74.858 93.764 96.442 74.803 

SA-H-2.5 94.762 97.812 74.670 94.387 97.447 74.670 93.067 96.315 74.633 

SA-H-2.7 94.659 97.951 74.521 94.280 96.844 74.529 92.869 95.829 74.482 

SA-H-2.9 94.694 98.271 74.389 94.429 97.453 74.395 92.745 96.541 74.662 

SA-H-3.1 95.715 98.089 75.331 95.378 97.697 75.386 94.153 97.265 75.349 

SA-H-3.3 94.918 97.835 75.130 94.603 97.630 75.145 93.092 96.873 75.119 

SA-H-3.5 94.700 98.119 74.989 94.485 97.116 74.985 92.862 96.508 74.941 

SA-H-3.7 94.755 98.290 74.843 93.977 97.022 74.872 92.699 96.313 74.824 

SA-H-3.9 94.414 98.019 74.771 94.362 97.335 74.770 92.717 96.176 74.720 
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APPENDIX C 

 

SELECTED PARTS SAMPLE FOR THE CASE STUDY  

 

 Tables C.1 lists the sample of parts, and the machines currently used for 

their processing, employed in the case study described in Chapter 5. The 

figures in body of the table are the operations sequence for each part on the 

necessary machines for it. 
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Table C.1 Selected parts and machines currently used for their processing 

 

See Excel Files
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See Excel Files
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See Excel Files
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See Excel Files
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See Excel Files
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See Excel Files
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See Excel Files
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APPENDIX D 

 

BEST HEURISTICS’ CODE LISTINGS 

 

Codes for the best performing GS heuristic versions studied in the research are 

listed below. A complete code for the original Hitomi is provided. Then the other 

heuristics are presented without the subroutine MyComputeMakespan that is found in 

Hitomi’s listing. This is the proposed timetabling procedure in Sec. 3.4.2. The 

subroutine is the same in the others so it need not be repeated. Similarly, typical 

subroutines used in different heuristic codes are not repeated. 

 

The listings assume problem sizes of  ixjxk of 3x4x5. Statements for data 

entry and printing of results are not presented completely but are reduced as follows. 

 

INPUT #2, P(1, 1, 1), P(1, 1, 2), ... , P(1, 5, 4) 

INPUT #2, P(2, 1, 1), P(2, 1, 2), ... , P(2, 5, 4) 

INPUT #2, P(3, 1, 1), P(3, 1, 2), ... , P(3, 5, 4) 

INPUT #2, Setup(1, 1), Setup(1, 2), ... , Setup(3, 4) 

 

These statements mean reading processing times for each job ; P(i, j, k), a line 

for each family. The last line is reading the setup time for each family i on each 

machine k.    

 

See Basic codes 
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 ملخص الرسالـة

 

 

 لققن اطقق لج علة الققم علمققي م اققز ءيإقق  عاةقق عب الققن   قق     م  قق   يطلققم طلققطلو ة الققم علطةطا قق  

ا ق  أ ي هلع عاالاب الن عامح عث اطالج لطا  ل ة الم   Group Technologyلط   ئ م ايم علطةطا     

 .أالا ة الم عل      ا ث اي  ة الم عاة عب ءي كل    لم:  علإام ج طن طرحلمين

 

ءاع   طثل هلع عاالاب مشطل م ليل أ طام علإ  ع  ا م ايط  طليم علة الم  شقكل  ق ز ك كقللإ ءقذن هقلع  

عاالاب طا اب ل مة ه   علح ليم ءي اظز علمخطيط ا علقمحكز ءقي  طليق   علإامق ج ا علمقي مشقير القن عمة هق   

ا كققللإ  يقق  ت علماققا  ءققي   Batch production systemل طققن علإامقق ج علكطققي الققن اظققز علقق ء     للمحققا

 .علطامة   ا  ارت  طر أقلر للطامج ا علمااع ءي عامخ عز ط   ئ م ايم علطةطا    ا خ ي  علإام ج

 

م لمشقييل ي رس هلع عل حث اطالج ة الم علطةطا    ءي خليم اام ةيقم عااقي  يم عاقم ميكيم ك  طخللق 

    طن عل      ك ا ق  مطق   رعاقم  ق   طقن علاطق لج علما ي يقم لة القم علطةطا ق   ك   اقمإ عل م ليقل علق طن 

 .ك كل  لن ح ت  Total flow timeا طةطا  اإ ي   أ طام مشييل عاة عب    Makespan  علكلي 

 

شقق ل اطك ا مإقق  ا كققللإ ةققرا عقمققرعد  قق   طققن علم قق ي    لققن علاطقق لج علط رااققم ك طققن أةققل عامك 

عامكش ل خلق    اطقالج ة القم علطةطا ق   ك ا ا ق ءم القن هقلع ء ق  عقمقرد اطقالج حاق ب أ طاقم عل ق ب ا 

علاامإ ب ا عل طن علكلي للمشييل ك ءي خليم طخللم ل    طن عل      طع اةا  أ طام مشقييل لقيريم لق    

لن ط ا ق  ليم اطالج ة الم علطةطا    للمط يقم ءقي كط  أةري   رعام طي عايم عامإ ء  علم رل   .عل طلي   

 .ظرال اظ ز اام ج م لي ي ق  ز   لي ل ا ي طل  أالاب عل ء    ك ا للإ   ان مكاين خ ي  اام ةيم 

 

ا ق   يا  علام  ج علاظريم محان أ عب اط لج علة الم علط رااقم   اقمخ عز علم ق ي   علط مرحقم ءقي هقل   

ام  ج أهطيم طرع  ت علمي  ل ا علمأثير علطم   ل  قين طرحلمقن علة القم ءقي اطقالج ة القم علرا لم ك اظإر  طن عل

 .   علطةطا     ا  رارت أخل هلع علمي  ل ءي علا م  ر  ا  مكاين اط لج علة الم علما ي يم لة الم علطةطا   

  

ء قط لكااإق  عاء قل ا ق  ا ة  أن عاا ليب علمكرعريم هي عاء ل طق   قين علاطق لج علط رااقم ك لقيس 

علط  لقم ءقي هقلع  Tabu searchا اةق  أن اطق لج , كقللإ آ عبع ا لكن ل ق رمإ   لقن طرع ق ت مي  قل علطقرحلمين 

  Simulated annealing ياطقق  ك اقق  أاقق ليب    Makespan عل حققث هققي عاء ققل ءققي ح لققم علقق طن علكلققي 

 Simulatedك ا لكقن اظقرع لان أاق ليب     Total flow time علط  لقم كقللإ ك هقي عاء قل ءقي ح لقم علق   
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annealing   يااب أ عؤه  طع  ي  ت حةز علطاألم  ك  ياط  مامطيع أا ليبTabu search     علاحمي ظ  طاماعه

 .ها علطي ل ءي هلع ءي علح لمين    Tabu searchء   ع م ر أالاب 

 

 ت م ريقل علقلعكرت طايلقم علطق ا يحمق ج القن ا ق    Tabu searchا ظإقر طقن  رعاقم علامق  ج أن علق   

Long Term Memory (LTM)     علطاققمخ طم ءيققأ ا أن محمققاي علققLTM      لققن ط لاطقق   أخققري 

ك كطق  أاقأ يةقب    [12]علط ق ز ءقي   Tabu searchطامامةم طن  طليقم عل حقث  خق ل طق  هقا طاةقا  ءقي علق  

 .ءي كل طن طرحلمن علة الم   LTMعامخ عز 

 

ء قق  أظإققر  علامقق  ج أن عاققمخ عز  علققم عحمطقق ل ق ققال مققرم ط   Simulated annealingا   لااقق م للقق    

  لميير ءي قيطم  علم علإ ل  ك ها عاء ل طن كااإ  غير ط مط ت  لن علمييقر ءقي قيطقم  علقم علإق ل ك ا  أن علق   

Simulated annealing   يحم ج الن ا  ءم  رةم طن علمحكز ءي مأثير عارق ز عل شاع يم ءي أ ع أ. 

 

كط  أا و عل حث  رارت طرع  ت عحمط ل اةا  عا طام علليريم ءي  طلي   حاق ب أ طاقم ع مق عب ا  

عامإ ب مشييل عاة عب ا حا ب عل طن علكلي ك ا ق  ظإقر  قق رت اطقالج علحاق     علط مقرد  لقن طرع ق ت للقإ 

ح لم اةا      طن  ق     عاةق عب ك  ياطق  لقا حقظ أن طح القم طرع ق ت اةقا  عا طاقم عللقيريم ءقي  ايقم  ءي

 .أا ليب علة الم لا م  ا طة يم

 

ا  يا  طرع  ت عا طام علليريم أاأ ق  لا يلو  ع ط  ك م ريل عل طن علكلقي ك  أاقأ عليمقرت عل طايقم طقن  

لن اإ يم مشييل أخر ة ب  لن آخر ط كياقم ك ا عاكثقر لقحم طقن هقلع   عيم مشييل أال ة ب  لن أال ط كيام ا

أن ي رل عل طن علكلي  أاأ أك ر  طن عامإ ب ك حيث اة  أن عل طن علكلي لا يرم ط عشمرعط   آخر ةق ب أا آخقر 

 Totalط كيام ك ا طن ا حيم أخري اة  أن عامإ عل عل طن علكلي يؤ ي القن طةطقا  أ طاقم اإ يق   عاةق عب  

flow time    ةي  ك  ياط  عل كس غير لحيو. 

 

ا أخيرع ء    يا  عل رعام علطي عايم أاأ طقن علططكقن مط يقم اطقالج ة القم علطةطا ق   ءقي اظق ز اامق ج  

م لي ا ي طل  أالاب عل ء    ك   ان مكاين خ ي  اام ةيم ءي علاعقع ك ا ها ط  ي اي لإطك ن مح يم ط عيق  م ايقم 

 رع  ط ليم ك يرت ك ا للالال الن للإ ءذاأ يم قين طرع ق ت ايةق    ق     عاةق عب ءقي علطةطا      ان عامثط

ءي حين أن طح الم علمحال الن اطقالج ة القم علطةطا ق   , علطرعحل عاالن لإ  ع  ليح   علمشييل للأة عب 

.ع مققققق عبع طقققققن أطقققققر اعقققققققع ا طقققققن لقققققيح   مشققققققييل ق  طقققققم ءإقققققا أاققققققلاب لا يطكقققققن  قققققط ن ام  ةققققققأ
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 وزارة التعليم العالي 

 المعهد العالي للتكنولوجيا ببنها

 قسم تكنولوجيا الهندسة الميكانيكية

 

 

 

 دراسة أساليب جدولة المجموعات في خلية انسيابية

 

 

 رسالـــة ماجستير مقدمة من

 

 مجدي السيد عبد الرحمن هلال
 (تكنولوجيا التصنيع)بكالوريوس الهندسة و التكنولوجيا 

 

 :زت من أجــــــي

 

  فاروق أحمــد الجيـــار. د.أ
 أستاذ الهندسة الصناعية

 جامعة حلوان –كلية الهندسة 
 

  عبد اللطيف محمد عبد اللطيف هريدى. د.أ
 أستاذ الهندسة الصناعية

 جامعة عين شمس –كلية الهندسة 
 

  أحمد سليمـــان حــزين. د.أ
 أستاذ الهندسة الميكانيكية

 لي للتكنولوجيا ببنهاعميد المعهد العا
 

 ميرفت عبد الستار بـــــدر. د
 

 قسم الهندسة الميكانيكية 

 القاهرة -المركز القومي للبحوث 
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 وزارة التعليم العالي 

 المعهد العالي للتكنولوجيا ببنها

 قسم تكنولوجيا الهندسة الميكانيكية

 

 

 

 انسيابيةدراسة أساليب جدولة المجموعات في خلية 

 

 

 رسالـــة مقدمة من

 

 مجدي السيد عبد الرحمن هلال
 

 إلى المعهد العالي للتكنولوجيا ببنها كجزء من متطلبات الحصول على

 

 درجة الماجستير في تكنولوجيا الهندسة الميكانيكية

 

 
 تحت إشراف

 

 أحمد سليمان حزين. د.أ

 نولوجيا ببنهاأستاذ الهندسة الميكانيكية و عميد المعهد العالي للتك

 

 ميرفت عبد الستار بدر. د

 الباحثة بقسم الهندسة الميكانيكية بالمركز القومي للبحوث بالقاهرة
 

 هاني محمود عساف. د

 بالقاهرة -المعادي  –الأكاديمية الحديثة لعلوم الحاسب و للإدارة 
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